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This is not a physics textbook. Rather, it is a physics
reader, a collection of some of the best articles and
book passages on physics. A few are on historic events
in science, others contain some partic.larly memorable
descript;on of what physicists do; still others deal with
philosophy of science, or with the impact of scientific
thought on the imagination of the artist.

There are old and new classics, and also some little-
known publications; many have been suggested for in-
clusion because some teacher or physicist remembered
an article with particular fondness. The majority of
articles is not drawn from scientific papers of historic
importonce themselves, because material from many of
these is readily available, either as quotations in the
Project Physics text or in special collections.

This collection is meant for your browsing. If you follow
your own reading interests, chances are good that you
will find here many pages that convey the joy these
authors have in their work and the excitement of their
ideas. If you want to follow up on interesting excerpts,
the source list at the end of the reader will guide you
for further reading.
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A fictional scientist tells of an apparatus for pro
ducing silence. Although the proposed scheme is im
probable, the story has a charming plausibility.

1 Silence, Please

Arthur C. Clarke

19 57

You COME upon the "White Hart" quite unexpectedly in
one of these anonymous little lanes leading down from
Fleet Street to the Embankment. It's no use telling you
where it is: very few people who have set out in a deter-
mined effort to get there have ever actually arrived. For
the first dozen visits a guide is essential: after that you'll
probably be all right if you close your eyes and rely on
instinct. Alsoto be perfectly frankwe don't want any
more customers, at least on our night. The place is already
uncomfortably crowded. All that I'll say about its loca-
tion is that it shakes occasionally with the vibration of
newspaper presses, and that if you crane out of the win-
dow of the gent's room you can just see the Thames.

From the outside, is looks like any other pubas in-
deed it is for five dais of the week. The public and saloon
bars are on the ground floor: there are the usual vistas of
brown oak panelling and frosted glass, the bottles behind
the bar, the handles of the beer engines . . . nothing out
of the ordinary at all. Indeed, the only concession to the
twentieth century is the juke box in the public bar. It was
installed during the war in a laughable attempt to make
G.I.'s feel at home, and one of the first things we did was
to make sure there was no danger of its ever working
again.

At this point I had better explain who "we" are. That
is not as easy as I thought it was going to be when I
started, for a complete catalogue of the "White Hart's"
clients would probably be impossible and would certainly
be excruciatingly tedious. So all I'll say at this point is
that "we" fall into three main classes. First there are the
journalists, writers and editors. The journalists, of course,
gravitated here from Fleet Street. Those who couldn't
make the grade fled elsewhere: the tougher ones remained.
As for the writers, most of them heard about, ur from
other writers, came here f9r copy, and got trapped.

1
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Where there are writers, of course, there are sooner or
later editors. If Drew, our landlord, got a percentage on
the literary business done in his bar, he'd be a rich man.
(We suspect he is a rich man, anyway.) One of our wits
once remarked that it was a common sight to see half a
dozen indignant authors arguing with a hard-faced editor
in one corner of the "White Hart", while in another, half
a dozen indignant editors argued with a hard-faced author.

So much for the literary side: you will have, I'd better
warn you, ample opportunities for close-ups later. Now
let us glance briefly at the scientists. How did they get in
here?

Well, Birkbeck College is only across the road, and
King's is just a few hundred yards along the Strand. That's
doubtless part of the explanation, and again personal rec-
ommendation had a lot to do with it. Also, many of our
scientists are writers, and not a few of our writers are
scientists. Confusing, but we like it that way.

The third portion of our little microcosm consists of
what may be loosely termed "interested laymen". They
were attracted to the "White Hart" by the general brou-
haha, and enjoyed the conversation and company so much
that they now come along regularly every Wednesday
which is the day when we all get together. Sometimes
they can't stand the pace and fall by the wayside, but
there's always a fresh supply.

With such potent ingredients, it is hardly surprising that
Wednesday at the "White Hart" is seldom dull. Not only
have some remarkable stories been told there, but remark-
able things have happened there. For example, there was
the time when Professor , passing through on his
way to Harwell, left behind a brief -case containingwell,
we'd better nct go into that, even thoughwe did so at the
time. And most interesting it was, too. . . . Any Russian
agents will find me in the corner under the dartboard. I
come high, but easy terms can be arranged.

Now that I've finally thought of the idea, it seems
astonishing to me that none of my colleaguei has ever
got round to writing up these stories. Is it a question of
being so close to the wood that they can't see the trees?
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Or is it lack of incentive? No, the last explanation can
hardly hold: several of them are quite as hard up as I am,
and have complained with equal bitterness about Drew's
"NO CREDIT" rule. My only fear, as I type these words
on my old Remington Noiseless, is that John Christopher
or George Whitley or John Beynon are already hard at
work using up the best material. Such as, for instance, the
story of the Fenton Silencer. . . .

I don't know when it began: one Wednesday is much
like another and it's hard to tag dates on to them. Be-
sides, people may spend a couple of months lost in the
"White Hart" crowd before you first notice their exist-
ence. That had probably happened to Harry Purvis, be-
cause when I first came aware of him he already knew
the names of most of the people in our crowd. Which is
more than I do these days, now that I come to think of it.

But though I don't know when, I know exactly how it
all started. Bert Huggins was the catalyst, or, to be more
accurate, his voice was. Bert's voice would catalyse any-
thing. When he indulges in a confidential whisper, it
sounds like a sergeant major drilling an entire regiment.
And when he lets himself go, conversation languishes else-
where while we all wait for those cute little bones in the
inner ear to resume their accustomed places.

He had just lost his temper with John Christopher (we
all do this at some time or other) and the resulting deto-
nation had disturbed the chess game in progress at the
back of the saloon bar. As usual, the two players were
surrounded by backseat drivers, and we all looked up with
a start as Bert's blast whammed overhead. When the
echoes died away, someone said: "I wish there was a way
of shutting him up."

It was then that Harry Purvis replied: "There is, you
know."

Not recognising the voice, I looked round. saw a
small, neatly-dressed man in the late thirties. He was
smoking one of those carved German pipes that always
makes me think of cuckoo clocks and the Black Forest.
That was the only unconventional thing about him: other-
wise he might have been a minor Treasury official all

Silence, Please
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dressed up to go to a meeting of the Public Accounts
Committee.

"I beg your pardon?" I :aid.
He took no notice, but made some delicate adjust-

ments to his pipe. It was then that I noticed that it wasn't,
as I'd thought at first glance, an elaborate piece of wood
carving. It was something much more sophisticateda
contraption of metal and plastic like a small chemical
engineering plant. There were even a couple of minute
valves. My God, it was a chemical engineering plant. . . .

I don't goggle any more easily than the next man, but I
made no attempt to hide my curiosity. He gave me a su-
perior smile.

"All for the cause of science. It's an idea of the Bio-
physics Lab. They want to find out exactly what there is
in tobacco smokehence these filters. You know the old
argumentdoes smoking cause cancer of the tongue, and
if so, how? fhe trouble is that it takes an awful lot of
erdistillate to identify some of the obscurer bye-prod-
ucts. So we have to do a lot of smoking."

"Doesn't it spoil the pleasure to have.all this plumbing
in the way?"

"I don't know. You see, I'm just a volunteer. I don't
smoke."

"Oh," I said. For the moment, that seemed the only
reply. Then I remembered how the conversation had
started.

"You were saying," I continued with some feeling, for
there was still a slight tintinus in my left ear, "that there
was some way of shutting up Bert. We'd all like to hear
itif that isn't mixing metaphors somewhat."

"I was thinking," he replied, after a couple of experi-
mental sucks and blows, "of the ill-fated Fenton Silen-
cer. A sad storyyet, I feel, one with an interesting les-
son for us'all. And one daywho knows?someone may
perfect it and earn the blessings of the world."

Suck, bubble, bubble, plop. . . .
"Well, let's hear the story. When did it happen?"
He sighed. .

"I'm almost sorry I mentioned it. Still, since you insist
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and, of course, on the understanding that it doesn't go
beyond these walls."

"Erof course."
"Well, Rupert Fenton was one of our lab assistants. A

very bright youngster, with a good mechanical back-
ground, but, naturally, not very well up in theory. He was
always making gadgets in his spare time. Usually the idea
was good, but as he was shaky on fundamentals the things
hardly ever worked. That didn't seem to discourage him:
I think he fancied himself as a latter-day Edison, and
imagined he could make his fortune from the radio tubes
and other oddments lying around the lab. As his tinkering
didn't interfere with his work, no-one objected: indeed,
the physics demonstrators did their best to encourage him,
because, after all, there is something refreshing about any
form of enthusiasm. But no-one expected he'd ever get
very far, because I don't suppose he could even integrate
e to the x."

"Is such ignorance possible?" gasped someone.
"Maybe I exaggerate. Let's say x e to the x. Anyway,

all his knowledge was entirely practicalrule of thumb,
you know. Give him a wiring diagram, however compli-
cated, and he could make the apparatus for you. But un-
less it was something really simple, like a television set, he
wouldn't understand how it worked. The trouble was, he
didn't realise his limitations. And that, as you'll see, was
most unfortunate.

"I think he must have got the idea while watching the
Honours Physics students doing some experiments in
acoustics. I take it, of course, that you all understand the
phenomenon of interference?"

"Naturally," I replied.
"Hey!" said one of the chess-players, who had given up

trying to concentrate on the game (probably because he
was losing.) "I don't."

Purvis looked at him as though seeing something that
had no right to be around in a world that had invented
penicillin.

"In that case," he said coldly, "I suppose I had better
do some explaining." He waved aside our indignant pro-

Silence, Please



tests. "No, I insist. It's precisely those who don't under-
stand these things who need to be gild about them. If
someone had only explained the theory to poor Fenton
while there was still time. . . ."

He looked down at the now thoroughly abashed chess-
player. .

"I do not know," he began, "if you have ever con-
sidered the nature of sound. Suffice to say that it consists
of a series of waves moving through the air. Not, how-
ever, waves like those on the surface of the seaoh dear
nol Those waves are up and down movements. Sound
waves consist of alternate compressions and rarefactions."

"Rare-what?"
"Rarefactions."
"Don't you mean `rarefications'?"
"I do not. I doubt if such a word exists, and if it does,

it shouldn't," retorted Purvis, with the aplomb of Sir Alan
Herbert dropping a particularly revolting neologism into
his killing-bottle. "Where was I? Explaining sound, of
course. When we make any sort of noise, from the faintest
whisper to that concussion that went past just now, a
series of pressure changes moves through the air. Have you
ever watched shunting engines at work on a siding? You
see a perfect example of the same kind of thing. There's a
long line of goods-wagons, all coupled together. One end
gets a bang, the first two trucks move togetherand then
you can see the compression wave moving right along the
line. Behind it the reverse thing happensthe rarefaction
I. repeat, rarefactionas the trucks separate again.

"Things are simple enough when there is only one
source of soundonly one set of waves. But suppose you
have two wave-patterns, moving in the same direction?
That's when interference arises, and there are lots of
pretty experiments in elementary physics to demonstrate
it. All we need worry about here is the factwhich I
think you will all agree is perfectly obvious--that if one
could get two sets of waves exactly out of step, the total
result would be precisely zero. The compression pulse of
one sound wave would be on top of the rarefaction of
anothernet resultno change and hence no sound. To
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go back to my analogy of the line of wagons, it's as if
you gave the last truck a jerk and a push simultaneously.
Nothing at all would happen.

"Doubtless some of you will already see what I am
driving at, and will appreciate the basic principle of the
Fenton Silencer. Young Fenton, I imagine, argued in this
manner. 'This world of ours,' he said to himself, 'is too
full of noise. There would be a fortune for anyone who
could invent a really perfect silencer. Now, what would

that imply . . . ?'
I' s "It didn't take him long to work out the answer: I told

you he was a bright lad. There was really very little in
his pilot model. It consisted of a microphone, a special
amplifier, aid a pair of loudspeakers. Any sound that
happened to be about was picked up by the mike, ampli-
fied and inverted so that it was exactly out of phase with
the original noise. Then it was pumped out of the speak-
ers, the original wave and the new one cancelled out, and
the net result was silence.

"Of course, there was rather more to it than that. There
had to be an arrangement to make sure that the cancelling
wave was just the right intensityotherwise you might be
worse off than when you started. But these are technical
details that I won't bore you with. As many of you will
recognise, it's a simple application of negative feed-back."

"Just a moment!" interrupted Eric Maine. Eric, I
should mention, is an electronics expert and edits some
television paper or other. He's also written a radio play
about space-flight, but that's another story. "Just a mo-
ment! There's something wrong here You couldn't get
silence that way. It would be impossible to arrange the
phase .. ."

Purvis jammed the pipe back in his mouth. For a mo-
ment there was an ominous bleubling a td I thought of the
first act of "Macbeth". Then he fixed Eric with a glare.

"Are you suggesting," he said frigidly, "that this story
is untrue?"

"Ahwell, I won't go as far as that, but . . ." Eric's
voice trailed away as if he had been silenced himself. He
pulled an old envelope out of his pocket, together with an

Silence, Please
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assortment of resistors and condensers that seemed to have
got entangled in his handkerchief, and began to do some
figuring. That was the last we heard from Mill for some
time.

"As I was saying," continued Purvis calmly, "that's the
way Fenton's Silencer worked. His first model wasn't very
powerful, and it couldn't deal with very high or very low
notes. The result was rather odd. When it was switched
on, and someone tried to talk, you'd hear the two ends of
the spectruma faint bat's squeak, and a kind of low
rumble. But he soon got over that by using a more linear
circuit (dammit, I can't help using some technicalities!)
and in the later model he was able to produce complete
silence over quite a large area. Not merely an ordinary
room, but a full-sized hall. Yes. . . .

"Now Fenton was not one of these secretive inventors
who won't tell anyone what they are trying to do, in case
their ideas are stolen. He was all too willing to talk. He
discussed his ideas with the staff and with the students,
whenever he could get anyone to listen. It so happened
that one of the first people to whom he demonstrated his
improved Silencer was a young Arts student calledI
thinkKendall, who was taking Physics as a subsidiary
subject. Kendall was much impressed by the Silencer, as
well he might be. But he was not thinking, as you may
have imagined, about its commercial possibilities, or the
boon it would bring to the outraged ears of suffering hu-
manity, Oh dear no! He had quite other ideas.

"Please permit me a slight digression. At College we
have a flourishing Musical Society, which in recent years
has grown in numbers to such an extent that it can now
tackle the less monumental symphonies. In the year of
which I speak, it was embarking on a very ambitious en-
terprise. It was going to produce a new opera, a work by
a talented young composer whose name it would not be
fair to mention, since it is now well-known to you all. Let
us call him Edward England. I've forgotten the title of the
work, but it was one of these stark dramas of tragic love
which, for some reason I've never been able to under-
stand, are supposed to be less ridiculous with a musical
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accompaniment than without. No doubt a good deal de-
pends on the music.

"I can still remember reading the synopsis while wait-
ing for the curtain to go up, and to this day have never
been able to decide whether the libretto was meant seri-
ously or not. Let's seethe period was the late Victorian
era, and the main characters were Sarah Stampe, the pas-
sionate postmistress, Walter Partridge, the saturnine game-
keeper, and the squire's son, who name I forget. It's the
old story of the eternal, triangle, complicated by the vil-
lager's resentment of change in this case, the new tele-
graph system, which the local crones predict will Do
Things to the cows' milk and cause trouble at lambing
time.

"Ignoring the frills, it's the usual drama of operatic
jealousy. The squire's son doesn't want to marry into the
Post Office, and the gamekeeper, maddened his rejec-
tion, plots revenge. The tragedy rises to its .ireadful cli-
max when poor Sarah, strangled with parcel tape, is found
hidden in a mail-bag in the Dead Letter Department. The
villagers hang Partridge from the nearest telegraph pole,
much to the annoyance of the linesmen. He was supposed
to sing an aria while he was being hung: that is one thing
I regret missing. The squire's son takes to drink, or the
Colonies, or both: and that's that.

"I'm sure you're wondering where all this is leading:
please bear with me for a moment longer. The fact is that
while this synthetic jealousy was being rehearsed, the real
thing was going on back-stage. Fenton's friend Kendall
had been spurned by the young lady who was to play
Sarah Stampe. I don't think he was a particularly vindic-
tive person, but he saw an opportunity for a unique re-
venge. Let us be frank and admit that college life does
breed a certain irresponsibilityand in identical circum-
stances, how many of us would have rejected the same
chance?

"I see the dawning comprehension on your faces. But
we, the audience, had no suspicion when the overture
started on that memorable day. It was a most distinguished
gathering: everyone was there, from the Chancellor down-

Silence, Please
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wards. Deani and professors were two a penny: I never
did discover how so many people had been bullied into
coming. Now that I come to think of it, I can't remember
what I was doing there myself.

"The overture died away amid cheers, and, I must ad-
mit, occasional cat-calls from the more boisterous mem-
bers of the audience. Perhaps I do them an injustice: they
may have been the more musical ones.

"Then the curtain went up. The scene was the village
square &Doddering Sloughleigh, circa 1860. Enter the
heroine, reading the postcards in the morning's mail. She
comes across a letter addressed to the young squire and
promptly bursts into song.

"Sarah's opening aria wasn't quite as bad as the over-
ture, but it was grim enough. Luckily, we were to hear
only the first few bars. . . .

"Precisely. We need not worry about such details as
how Kendall had talked the ingenuous Fenton into it
if, indeed, the inventor realised the use to which his device
was being applied. All I need say is that it was a most
convincig demonstration. There was a sudden, deaden-
ing blanket of silence, and Sarah Stampe just faded out
like a TV programme when the sound is turned off. Every-
one was frozen in their seats, while the singer's lips went
on moving silently. Then she too realised what had hap-
pened. Her mouth opened in what would have been a
piercing scream in any other circumstances, and she fled
into the wings amid a shower of postcards.

"Thereafter, the chaos was unbelievable. For a few min-
utes everyone must have thought they had lost the sense
of hearing, but soon they were able to tell from the be-
haviour of their .companions that they were not alone in
their deprivation. Someone in. the Physics Departmero
must have realised the truth fairly promptly, for soon
little slips of paper were circulating among the V.I.P.'s in
the front row. The Vice-Chancellor was rash enough to
try and restore order by sign-language, waving frantically
to the audience from the stage. By this time I was too sick
with laughter to appreciate such fine details.

"There was nothing for it but to get out of the hall,
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which we all did as quickly as we could. I think Kendall
had fledhe was so overcome by the effect of the gadget
that he didn't stop to switch it off. He was afraid of stay-
ing around in case he was caught and lynched. As for
Fentonalas, we shall never know his side of the story.
We can only reconstruct the subsequent events from the
evidence that was left.

"As I picture it, he must have waited until the hall was
empty, and then crept in to disconnect his apparatus. We
heard the explosion all over the college."

"The explosion?" someone gasped.
"Of course. I shudder to think what a narrow escape

we all had. Another dozen decibels, a few more phons--
and it might have happened while the theatre was still
packed. Regard it, if you like, as an example of the in-
scrutable workings of providence that only the inventor
was caught in the explosion. Perhaps it was as well: at
least he perished in the moment of achievement, and be-
fore the Dean could get at him."

"Stop moralising, man. What happened?"
"Well, I told you that Fenton was very weak on theory.

If he'd gone into the mathematics of the Silencer he'd
have found his mistake. The trouble is, you see, that one
can't destroy energy. Not even when you cancel out one
train of waves by another. All that happens then is that
the energy you've neutralized accumulates somewhere else.
It's rather like sweeping up all the dirt in a roomat the
cost of an unsightly pile under the carpet.

"When you look into the theory of the thing, you'll find
that Fenton's gadget wasn't a silencer so much as a col-
lector of sound. All the time it was switched on, it was
really absorbing sound energy. And at that concert, it was
certainly going slat out. You'll understand what I mean if
you've ever looked at one of Edward England's scores. On
top of that, of course, there was all the noise the audi-
ence was makingor I should say was trying to make
during the resultant panic. The total amount of energy
must have been terrific, and the poor Silencer had to keep
on sucking it up. Where did it go? Well, I don't know the
circuit detailsprobably into the condensers of the power

Silence, Please
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pack. By the time Fenton started to tinker with it again,
it was like a loaded bomb. The sound of his approaching
footsteps was the last straw, and the overloaded ,apparatus
could stand no more. It blew up."

For a moment no-one said a word, perhaps as a token
of respect for the late Mr. Fenton. Then Eric Maine, who
for the last ten minutes had been muttering in the corner
over his calculations, pushed his way through the ring of
listeners. He held a sheet of paper thrust aggressively in
front of him.

"Hey!" he said. "I was right all the time. The thing
couldn't work. The phase and amplitude relations. . . ."

Purvis waved him away.
"That's just what I've explained," he said patiently.

"You should have been listening. Too had that Fenton
found out the hard way."

He glanced at his watch. For some reason, he now
seemed in a hurry to leave.

"My goodness! Time's getting on. One of these days,
remind me to tell you about the extraordinary thing we
saw through the new proton microscope. That's an even
more remarkable story."

He was half way through the door before anyone else
could challenge him. Then George Whitley recovered his
breath.

"Look here," he said in a perplexed voice. "How is it
that we never heard about this business?"

Purvis paused on the threshold, his pipe now burbling
briskly as it got into its stride once more. He glanced back
over his shoulder.

"There was only one thing to do," he replied. "We
didn't want a scandalde mortuis nil nisi bonum, you
know. Besides, in the circumstances, don't you think it
was highly appropriate toahhush the whole business
up? And a very good night to you all."
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The invention of the steam engine was a major factor
in the early stages of the Industricl Revolution.

2 The Steam Engine Comes of Age

R. J. Forbes and E. J. Dijksterhuis

1963

THE steam engine, coke, iron, and steel are the four principal
factors contributing to the acceleration of technology called the
Industrial Revolution, which some claim to have begun about
1750 but which did not really gain momentum until about 1830.
It started in Great Britain but the movement gradually spread to
the Continent and to North America during the nineteenth
century.

SCIENCE INSPIRES THE ENGINEER

During the Age of Projec the engineer had little help from the
scientists, who were building the mathematical-mechanical
picture of the Newtonian world and discussing the laws of nature.
However, during the eighteenth century, the Age of Reason,
when the principles of this new science had been formulated, the
scientists turned to the study of problems of detail many of which
were of direct help to the engineer. The latter was perhaps less
interested in the new ideals of 'progress' and 'citizenship of the
world' than in the new theory of heat, in applied mechanics and
the strength of materials, or in new mathen .ttical tools for their
calculations. The older universities like 0 .ford and Cambridge
contributed little to this collaboration. The pace was set by the
younger ones such as the universities of Edinburgh and Glasgow,
which produced such men as Hume, Roebuck, Kerr, and Black,
who stimulated the new technology. The Royal Society, and also
new centres like the Lunar Society and the Manchester Philo-
sophical Society and the many similar societies on the Continent,
contributed much to this new technology by studying and dis-
cussing the latest scientific theories and the arts. Here noblemen,
bankers, and merchants met to hear the scientist, the inventor,
and the engineer and to help to realize many of the projects
which the latter put forward. They devoted much money to
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scientific investigations, to demonstrations and stimulated in-
ventions by offering prizes for practical solutions of burning
problems. They had the capital to promote the 'progress' which
made Dr Johnson cry out: 'This age is running mad after innova-
tion. All business of the world is to be done in a new way, men
are to be hanged in a new way; Tyburn itself is not safe from the
fury of innovation!' New institutions such as the Conservatoire
des Arts et Métiers and the Royal Institution of Great Britain
were founded to spread the new science and technology by
lectures and demonstrations and the number of laymen attending
these lectures was overwhelming.

ENGINEERS AND SKILLED LABOUR

The new professional engineers which the Ecole des Ponts et
Chaussees began to turn out were the descendants of the sappers
and military engineers. However, the new technology also need -1
other types of engineers for which new schools such as the Ecole
Polytechnique and the Ecole des Mines were founded. In Great
Britain the State was less concerned with the education of the
new master craftsmen. They were trained in practice: such
famous workshops as that of Boulton and Watt in Soho, Birm-
ingham, or those of Dobson and Barlow, Asa Lees, and Richard
Roberts. Their success depended not only on good instruction
but also on appropriate instruments and skilled labour.

The scientists of the eighteenth century had turned out many
new instruments which were of great value to the engineer. They
were no longer made individually by the research scientist, but
by professional instrument makers in Cassel, Nuremberg, or
London, and such university towns as Leiden, Paris, and Edin-
burgh. Their instruments became more efficient and precise as
better materials became available such as good glass for lenses
and more accurate methods for working metals.

Skilled labour was more difficult to create. The older genera-
tion of Boulton and Watt had to work with craftsmen such as
smiths and carpenters, they had to re-educate them and create
a new type of craftsmen, 'skilled labour'. The design of early

14



The Steam Engine Comes of Age

machinery often reveals that it was built by the older type of
craftsmen that belonged to the last days of the guild system. The
new industrialists tried out several systems of apprenticeship
in their machine shops during the eighteenth century until they
finally solved this educational problem during the next century
and created schools and courses for workmen for the new indus-
tries, qualified to design and to make well-specified engines and
machine parts.

A factor that contributed greatly to this development was the
rise of the science of applied mechanics and the methods of
testing materials. The theories and laws which such men as
Palladio, Derand, Hooke, Bernoulli, Euler, Coulomb, and
Perronet formulated may have been imperfect but they showed
the way to estimate the strength of materials so important in
the construction of machinery. 's Gravesande and Van Muss-
chenbroek were the first to design and demonstrate various
machines for measuring tensile, breaking, and bending strengths
of various materials early in the eighteenth century. Such instru-
ments were gradually improved by Gauthey, Ronde let, and
others. The elastic behaviour of beams, the strength of arches,
and many other problems depended on such tests. Some scien-
tists developed tests for certain types of materials, for instance
for timber (Buffon), stone (Gauthey), or metals (Reaumur).
Surh knowledge was of prime importance to the development
of the steam engine and other machinery which came from the
machine shops.

. MACHINE SHOPS

The engineers who led this Industrial Revolution had to create
both the tools and the new workmen. Watt, himself a trained
instrument maker, had to invent several new tools and machines
and to train his workmen in foundries and machine shops. Hence
his notebooks are full of new ideas and machines. He invented
the copying press. His ingenious contemporaries Maudsley and
Bramah were equally productive. Joseph Bramah was respon-
sible for our modern water closet (1778) and the first successful
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patent lock (1784) which no one succeeded in opening with a
skeleton key before Hobbs (1851), who spent fifty-one hours of
labour on it.

The difficulty in finding suitable labour arose from the fact that
the new machines were no longer single pieces created by one
smith, but that series of such machines were built from standard
parts which demanded much greater precision in manufacturing
such parts. The steam engine parts had to be finished accurately
to prevent the steam escaping between metal surfaces which slid
over each other, especially as steam pressures were gradually
increased to make these machines -nore efficient. Hence the
importance of the new tools and finishing processes, such as the
lathe and drilling, cutting and finishing machinery.

In 1797 Henry Maudsley invented the screw-cutting lathe.
Lathes originally belonged to the carpenter's shop. Even before
the eighteenth century they had been used to turn soft metals
such as tin and lead. These lathes were now moved by means
of treadles instead of a bow, though Leonardo da Vinci had
aliekidesigned lathes with interchangeable sets of gear wheels
to regulate the speed of the lathe. Maudsley applied similar ideas
and introduced the slide rest. Brunel, Roberts, Fox, Witworth,
and others perfected the modern lathe, which permitted moving
the object horizontally and vertically, adjustment by screws, and
automatic switching off when the operation was completed. The
older machine lathes were first moved by hand, then by a steam
engine, and finally by electric motors. Now the mass production
of screws, bolts, nuts, and other standard parts became possible
and machines were no longer separate pieces of work. They were
assembled from mass-produced parts.

The tools of the machine shop were greatly improved during
the nineteenth century, pulleys, axles, and handles being per-
fected. The new turret or capstan lathe had a round or hexagonal
block rotating about its axis and holding in a hole in each side
the cutting or planing tool needed. These tools could then at will
be brought into contact with the metal to be finished, thus per-
forming the work of six separate lathes in a much shorter time.
The turret block was made to turn automatically (1857) and
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finally Hartness invented the flat turret lathe, replacing the block
by a horizontal face plate which gave the lathe greater flexi-
bility and allowed work at higher speeds. Such lathes ranged
from the mall types used by the watchmaker to those for pro-
cessing large guns. This development was compjeted by the
introduction of high-speed tool steels by Taylor and White about
the beginning of our century, making the machine lathe a uni-
versal tool for the mass production of machine parts.

FACTORIES AND INDUSTRIAL REVOLUTION

This brought about a great change in the manufacturing process
itself. No longer were most commodities now made in the private
shops of craftsmen, but in larger workshops in which a water
wheel or a steam engine moved an axle from which smaller
machinery derived its power by means of gear wheels or belts,
each machine only partly processing the metal or material. Hence
the manufacturing process was split up into a series of opera-
Vons, each of which was performed by a special piece of machin-
ery instead of being worked by hand by one craftsman who
mastered all the operations.

The modern factory arose only slowly. Even in 1800 the word
`factory' still denoted a shop, a warehouse, or a depot; the
eighteenth century always spoke of 'mills' in many of which
the prime mover-still was a horse mill or tread mill. The textile
factory law of 1844 was the first to speak of `factories'.

It is obvious that the new factories demanded a large outlay
of capital. The incessant local wars had impoverished central
Europe and Italy and industry did not flourish there, so many
German inventors left their country to seek their fortune in
western Europe. State control of the 'manufactures' in France
had not been a success. The French government had not created
a new class of skilled labour along with the new engineers, and
Napoleon's `self- supporting French industry' was doomed to
be a failure when overseas trade was re-established after his fall.
Neither the Low Countries nor Scandinavia had the necessary
capital and raw materials needed for the Industrial Revolutio-n.
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Only in eighteenth-century England did such a fortunate com-
bination of factors exist, a flourishing overseas trade, a well-
developed banking system, raw materials in the form of coal and
iron ores, free trade and an industry-minded middle class willing
to undertake the risks of introducing new machinery and recruit-
ing the new skilled labour from the ranks of the farmers and
immigrants from Ireland and Scotland.

Hence we find the first signs of the Industrial Revolution in
Great Britain rather than in France, which, however, soon fol-
lowed suit. Competition from Germany did not start until the
middle of the nineteenth century, and from the United States
not until the beginning of our century.

THE BEAM ENGINES

The prime mover of this new industry was the steam engine. The
primitive machine that pumped water was transformed into a
prime mover by the efforts of Newcomen and Watt. Thomas
Newcomen (1663-1729) and John Galley built a machine in
which steam of 100° C moved a piston in its cylinder by con-
densation (1705). This piston was connectedwith the end ofa beam;
the other end of which was attached to the rod of the pump or
any other machine. Most of these engines were used to drain
mines. John Smeaton (1724-92) studied the Newcomen engine
and perfected it by measurement and calculation, changing its
boiler and valves and turning it into the most popular steam
engine up to 1800.

James Watt (1736-1819), trained as an instrument maker,
heard the lectures of John Robison and Joseph Black at Edin-
burgh, where the new theory of heat was expounded and methods
were discussed to measure the degree and the amount of heat, as
well as the phenomena of evaporation and condensation. He
perceived that a large amount of heat was wasted in the cylinder
of the Newcomen engine, heating it by injection of steam and
cooling it by injecting cold water to condense the steam. Hence
he designed an engine in which the condensation took place ina
separate condenser, which was connected with the cylinder by
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opening a valve at the correct moment, when the steam had
forced the piston up (1763).

Watt tried to have his engine built at John Roebuck's Carron
Iron Works in Scotland but did not find the skilled workmen
there to make the parts. So he moved southwards and started
work at the works of Matthew Boulton, who built Roebuck's
share in Watt's patents (1774). At the nearby Bradley foundry of
John Wilkinson, cylinders could be bored accurately and thus
Watt produced his firs, large-se-le engine in 1781. The power
output of the Watt engine proved to be four times that of a
Newcomen engine. It was soon used extensively to pump water
in brine works, breweries, and distilleries. Boulton and Murdock
helped to advertise and apply Watt's engines.

THE DOUBLE-ACTING ROTATIVE ENGINE

However, Watt was not yet satisfied with these results. His
Patent of 1781 turned the steam engine into a universally
efficient prime mover. The rod on the other arm of the beam
was made to turn the up-and-down movement of the beam into a
rotative one, by means of the 'sun and planet movement' of a
set of gear wheels connecting the rod attached to the end of the
beam with the axle on which the driving wheels and belts were
fixed which moved the machines deri ving the ir energy from this axle.

A further patent of 1782 made his earlier engine into a double-
acting one, that is a steam engine in which steam was admitted
alternately on each side of the piston. This succeeded only when
Boulton and Watt had mastered the difficult task of casting and
finishing larger and more accurate cylinders. Watt also had to
improve the connexion of the beam and the piston rod by means
of his extended three-bar system (1784) which he called the ' paral-
lel movement'. He was also able to introduce a regulator which
cut off the steam supply to the cylinder at the right moment and
leaving the rest of the stroke to the expansion of the steam made
better use of its energy.

In 1788 he designed his centrifugal governor which regulated
the steam supply according to the load keeping constant the
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number of strokes of the piston per minute. Six years latze he
added the steam gauge or indicator to his engine, a miniature
cylinder and piston, connected with the maiwcylinder. The small
piston of this indicator was attached to a pen which could be
made to indicate on a piece of paper the movements of the little
piston and thus provide a control on the movements of the steam
engine proper. William Murdock (1754-1839), by inventing the
sliding valves and the means of preparing a paste to seal off the
seams between the cast iron surface of the machine parts, con-
tributed much to the success of these engines as proper packing
was not yet available.

By 1800 some 500 Boulton and Watt engines were in operation,
160 of which pumped water back on to water wheels moving
machinery. The others were mostly rotative engines moving
other machinery and twenty-four produced blast air for iron
furnaces, their average strength being 15-16 h.p.

THE MODERN HIGH-PRESSURE STEAM ENGINE

The period 1800-50 saw the evolution of the steam engine to
the front rank of prime movers. This was achieved by building
steam engines which could be moved by high-pressure steam of
high temperature containing much more energy per pound than
the steam of 100° C which moved the earlier Watt engines. This
was only possible by perfecting the manufacture of the parts of
the steam engine, by better designing, and by the more accurate
finishing and fit of such parts.

Jabez Carter Homblower built the first 'compound
engine', in which the steam released from the first cylinder was
left to expand further in a second one. These compound engines
did away with the Watt condenser, but could not yet compete
seriously until high pressure steam was applied. Richard Tre-
vithick and Oliver Evans were the pioneers of the high-pressure
engine, which meant more horse power per unit of weight ofthe
stehrn engine. This again meant lighter engines and the possi-
bility of usiiig them for road and water traffic.

Nor were properly designed steam engines possible until the
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theory of heat had been further elaborated and the science of
thermodynamics formulated, the theory of gases studied, and
mom evidence produced for the strength of metals and materials
at high temperatures. Another important problem was the con-
struction of boilers to produce the high-pressure steam. The
ancient beehive-shaped boilers of Watt's generation could not
withstand such pressures. Trevithick created the Cornish boiler
(1812), a horizontal cylinder heated by an inner tube carrying the
combustion gases through the boiler into the flue and adding to
the fuel efficiency of the boilers. The Lancashire boiler, designed
by William Fairbairn (1844), had two tubes and became a serious
competitor of the Cornish boiler. Better grates for burning the
coal fuel were designed such as the `travelling grate stoker' of
John Bodmer (1841), and more fuel was economized by heating
the cold feed water of the boiler with flue gases in Green's
economizer (1845). Then multitubular boilers were built in the
course of the nineteenth century, most of which were vertical
boilers, the best known of which was the Babcock and Wilcox
tubular boiler (1876).

Further factors helping to improve the design of high-pressure
steam engines were the invention of the direct-action steam pump
by Henry Worthington (1841), the steam hoist (1830), and James
Nasmyth's steam hammer (1839). In the meantime Cartwright
(1797) and Barton (1797) had perfected metallic packing which
ensure tight joints and prevented serious leakage.

Thus steam pressures rose from 3.5 atm in 1810 to about
5 or 6 atm in 1830, but these Garly high-pressure engines were
still of the beam type. Then came the much more efficient
rotation engines in which the piston rod was connected with the
driving wheel by means of a crank. Though even the early
American Corliss engine (1849) still clung to the beam design,
John M'Naught (1845) and E. Cowper (1857) introduced modern
rotative forms, which came to stay. Three-cylinder engines of this
type were introduced by Brotherhood (1871) and Kirk (1874)
and became very popular prime movers for steamships (1881).

Not until 1850 was the average output of the steam engines
some 40 h.p., that is significantly more than the 15 h.p. windmill
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or water-wheel of the period. Again the steam engine was not
bound to sites where water or wind were constantly available,
it was a mobile prime mover which could be installed where
needed, for instance in iron works situated near coal fields and
iron ores. In 1700 Great Britain consumed sonic 3,000,000 tons
of coal, mostly to heat its inhabitants. This amount had doubled
by 1800 because of the introduction of the steam engine, and
by 1850 it has risen to 60,000,000 tons owing to the steam engine
and the use of coke in metallurgy. ..
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The principle of conservation of energy was proposed
simultaneously by many physicists, including von Mayer,
Joule, von Helmholtz, and Thomson. This populariza-
tion appeared soon after the discovery. The author is
perhaps better known as Lord Kelvin.

Energy

William Thomson and Peter G. Tait

1862
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ENERG
BY PROFESSORS WILLIAM THOMSON AND P. G. TAIT.

Tux nonscientific reader who may take up this
article in the expectation of finding an exhortation
to manly sports, ors, life of continual activity, with
corresponding censure of every form of sloth and
sensual indulgence, will probably be inclined to
throw it down when he finds that it is devoted to
a question of physical science. But let him not
judge too hastily. Rigorous and minute scientific
investigation is repulsive to all but a few, and these
specially trained, minds ; but the principle on
which we are about to offer a few remarks admits
of being made, at all events in its elements,
thoroughly popular. General theories, whether
of Politics, International Law, or, as in the present
case, of Natural Philosophy, are, indeed, by their
very generality, capable of being clearly oppre
hended through the widest circle of intelligent
readers, if properly presented; while special gum
Lions, such as Churchrates, and the Ballot, the
Bights of Neutral Bottoms, or the Temperature of
Space, require to be explained to each individual
in a manner, and with precautions, suited to his
individual bias or defect of apprehension.

Of late several attempts have been made, with
various success, to impart to the great mass of the
interested but unscientific public an idea of the
Ns Gam LAW of Physical Science, known as
the Conservation of Energy, and it is on account of
the defects, or rather errors, with which most of
these attempts abound, that we have aimed pri-
marily at preparing an article, which shall be at
all events accurate, as far as human knowledge at
present reaches. As to its intelligibility we cannot
of course decide. But we take the precaution of
inserting, in the form of notes, portions of the
article which, though of very great importance,
could only be made intelligible to the general
reader by elaborate and tedious explanations.

Every one knows by experience what Force is.
Our ideas are generally founded on the sensation
of the effort required, say, to press or to move some
mass of matter. In general, Force is defined as
that which produces, or tends to produce, motion.
sow, if no motion be produced, the force which
may have been exerted is absolutely lost. Hence
the inconvenience and error of the phrase, "Con.
*emotion of Force," which is very commonly ap.
plied to our present subject. An;ong the host of
errors which are due to confounding Force with
Energy, one of the most extraordinary was some
time ago enunciated in a popular magazine in some
such form as this, "The sumtotal of the Forces in
the Universe is Zcro"a statement meaningless if

it be applied to Force in its literal sense, and untrue
if it refer to Energy. This is one example of the
errors we have undertaken to combat ; another re-
fers more to the history than to results of the
principle. We were certainly amazed to find in
recent number of another popular magazine, and
in an article specially intended for popular infor-
mation, that one great branch of our present sub-
ject, which we had been accustomed to associate
with the great name of Davy, was in reality di's-
covered so lately as twenty years ago by a German
physician. Such catering for the instruction of
the public requires careful looking after ; and we
therefore propose to place on a proper basis the
history of the discovery, and to enumerate and
illustrate come of the principal truths already lie-
quired to the theory of the Conservation of Energy.
To do this in a popular form we shall commence
with an examination of some cases of everyday
occurrence, and gradually introduce the scientific
terms when wo feel that we have clearly made out
the ideas for which they stand. Once introduced,
they will be used freely, not so much for brevity
as for definiteness.

When an eightday clock has been wound up, it
is thereby enabled to go for a week in spite of
friction and the resistance which the air at every
instant offers to the pendulum. It has got what
in scientific language we call a supply of Energy.
In this case the energy simply consists in the fact
of a mass of lead being suspended some four feet
or so above the bottom of the clockcase. The
mere fact of its being in that position gives it a
power of " doing work" which it would not poe-
seas if lying on the ground. This is called Poten
fiat Energy. It will evidently be just so much the
greater as the weight is greater, and as the height
through which it can fall is greater. Its amount
is, therefore, proportional to the product of the
weight and the height it has to fall, because such
a product is doubled, as the energy is, by doubling
either factor. Thus a weight of one pound with
an available descent of forty feet, has the same
amount of potential energy as ten pounds at four
feet, eight pounds at five feet, or forty pounds at
one foot. And we may easily see that the work
required to lift the weight to its present position
will be the same in all these cases, if we take for
example such an illustration as the lifting of coals
from a pit. Twice as much work is dons (even in
the popular signification of the phrase, " doing
work") when two tons are raised as when one only
has been so ; and to raise a ton through forty
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fathoms requires twice as much work as to raise it
through twenty. Hence it appears that work ex
pended by an animal or machine in lifting a weight
remains stored as potential energy in the relation
between the earth and the lifted weight, and thus
that energy so spent is not lost. But suppose the
coals to be allowed to tumble down the pit again,
what becomes of the energy! This question will
give us an idea of the nature of the subject we are
dealing with.

We have already adverted to the serious errors
into which we are liable to fall from an incorrect
use of the word force, but we may with advantage
recur to the subject here. What becomes of the
enormous force with which the earth continually
attracts a mountain, or that with which the sun
attracts the earth ? Force is continually exercised
in each of these cases, yet no progressive effect is
produced on the mountain; and the changes which
the velocity of the earth in its orbit undergoes,
are, in the course of a year, as much in the way of
loss as of gain. We do no work, however much
we may fatigue ourselves, if we try to lift a ton
from the ground. If we try to lift a hundred-
weight, we can raise it a few feet, and have then
done work, and the work is expressible as so many
pounds raised so many feet, and can therefore be
stated as so many foot-pounds, each foot-pound
being the work required to raise a pound weight a
foot high. The true statement which meets all
such cases is, Energy is never lost. But we must
now return to our first illustration, to see how
energy may be modified or transformed, and then
we shall begin to understand how it is that no
modification or transformation ever causes loss of
energy.

There are two ways of raising a weight to a
height : by a continuous application of force, as
by a windlass, or by an almost instantaneous im-
pulse, such as a blow from a cricketbat, or the
action of gunpowder. A 64 lb. shot, fired verti
tally from a gun loaded with an ordinary service
charge of powder, would, if unresisted by the air,
rise to about 35,000 feet, and if seized and secured
at the highest point of its course, would possess
there, in virtue of its position, a potential energy
of 2,240,000 foot-pounds. When it left the gun
it had none of this, but it was moving at the rate of
Afteen hundred feet per second. It had RINIrrIC or
(as it has sometimes been called) actual energy.
We prefer the first term, which indicates motion
as the form in which the energy is displayed.
/Kinetic energy depends on motion ; and observa-
tion shows that its amount in each case is calcul-
able from the mass which moves and the velocity
with which it moves. And this being understood,
it is easy, by considering a very simple case, to
find how it so depends. For, if a stone be thrown

up with a velocity of 32 feet per second, it will
rise to a height of nearly 16 feet ; if thrown with
double velocity, or 64 feet per second, it will rise
four times as high, or to about 631 feet ; if the
velocity be trebled, it rises nine times as high, or
to 143 feet, and so on. Hence, as we must mea-
sure the energy of a moving body by the height to
which it will rise if its motion is directed vertically
upwards, we find that we have to measure it by
the square of the velocity. The recent tremend-
ous performances of the 12ton Armstrong gun
form an admirable illustration of the same point,
showing, as they do, that to penetrate a thick
plate of iron mere weight of shot is compara-
tively unavailingit must have great velocity ;
an' in fact, with double the velocity we get at
once four times the penetrating or destructive
power. By such facts as these, we are led to mea-
sure kinetic energy by the square of the velocity
with which a body moves. And there is particu-
lar advantage in taking as the exact expression,
one-half of the product of the moving mass and the
square of its velocity in feet per second, because
this makes the unit of measurement agree .with
that adopted for potential energy. We may then
express the relation between the forms of energy,
in the case of a projectile unresisted by the air, by
saying, the sum of the potential and kinetic energies
does not vary during its flight. As it rises it gains
potential energy, but its motion is slower, and
thus kinetic energy is lost; ass it descends it
continually loses potential energy, but gains velo-
city, and, therefore, kinetic energy. But what
happens when it reaches the ground and comes to
rest! Here it would appear to lose both its poten-
tial and kinetic energies. The first, indeed, is all
gone just as the mass reaches the ground. To a
superficial observer, the second might seem to be
expended in bruising and displacing the bodies on
which it impinges. But there is sometlung more
profound than this, as we shall presently see.

Meanwhile, as popular examples of the two
kinds of energy, we may give such illustrations as
a coiled spring, say the hair-spring of a watch when
the balancewheel is at one end of its range, a
drawn bow, a head of water, compressed air,
all forma of potential energy ; and the correspond-
ing kinetic form in each cuethe motion of the
balancewheel of the watch, the motion of an
arrow, a jet of water, an airgun bullet, and so on.
But we need not dwell longer on this, as such
matters abound in every-day experience.

To recur to the more mysterious transformations
of energy, let us consider, as an excellent example,
the case of motion of water in a basin. By stir-
ring the water, originally at rest, we can easily
give it a considerable velocity of rotation, in
virtue of which it will, of course, possess con.

a
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aiderable kinetic energy. Moreover, the level
is disturbed ; the water rises from the middle
to the sides of the basin, and, in virtue of this,
the centre of gravity of the whole is higher than
when the water was at rest. It thus possesses
potential energy also. If the stirring be discon-
tinued, all visible motion ceases after a few minutes,
and, the surface becoming level, the potential
energy is lost. It seems as if the kinetic energy
also is all lost in the ceasing of the visible motion.
What remains in their place ? Apparently the
water has returned precisely to the state in which
it was before the stirring commenced, and the
work done in stirring has been thrown away.
But this is not the ease : the water is warmer than
before the stirring, and warme r than during the time
when it was moving. The energy which apparently
disappeared really exists as Heat. We might mul.
tiply examples of this kind indefinitely, and in all
we should be led to the inevitable question, What
becomes of energy apparently lost? The answer is,
It ultimately becomes heat. We say ultimately, be-
cause, as will afterwards be shown, energy appa-
rently lost may take in succession various forms,
all of which, however, finally become heat. Sen-
sible heat is, in fact, motion, and is therefore a
form of kinetic energy. This was surmised at
least two centuries ago, for we find it stated with
remarkable clearness in the writings of Locke and
others. But it remained a conjecture, unsupported
by scientific evidence, until the proof was furnished
by Davy. The simple experiment of melting two
pieces of ice by rubbing them together showed at
once the impossibility of heat being a substance.
But it is not to be imagined that for all this the
pleasant fiction called Caloric was to be abandoned;
and consequently, for upwards of forty years after
Davy's proof of its nonexistence, calorie was be.
lieved in, written about, and taught, all over the
world.*

About the timo of Davy's experiments, Rumford
also was engaged on the subject, and by measuring
the heat developed in boring a cannon, arrived a'
a very approximate answer to the question, "How
much heat can be produced by the expenditure of
so much work ?" or, in other words, and with the
modern phraseology, " What is the Dynamical
Equivalent of Heat?"

The founder of the modern dynamical theory of
heat, an extension immensely beyond anything pre.
vionly surmised, is undoubtedly Joule. As early
as 1840 we find him investigating the heat gene.
rated by electric currents, and in 1841 he published

No one who knows the present state of science can
*Bore the fact that many of its most certain truths are
still misunderstood, and their very opposites often
taught, even by men who from their position or their
notoriety are supposed by the public to be among the
best informed.

researches which contain the germ of the vast de-
velopments of dynamical science as applied to che-
mical acticn. In 1843 he published the results of
a 'well planned and executed series of experiments,
by which he ascertained that a pound of water is
raised one degree Fahrenheit in temperature by
772 footpounds of mechanical work done upon it.
In other words, if a pound of water fall from a
height of 772 feet, and the kinetic energy thus ac
quired in the form of ordinary motion be entirely
transformed into the kinetic energy of heat, the
water will be one degree hotter than before its fall.
Of course it is not in tideway that the experimcnta
of Joule were made, but it gives perhaps as clear
an idea of his result as any other. The actual
method which he first employed was to force water
through sniall tubes. In later researches he arrived
at the same numerical result (within xis of differ-
ence), by stirring water by means of a paddle-
wheel, driven by the descent of a weight. The
number of foot-pounds of potential energy lost by
the descending weight of course gave the value of
the kinetic energy imparted to the water, and when
the latter came to apparent rest, the heat produced
was therefore the equivalent of either. These ex-
periments, of course, required extreme precautions
to prevent or to allow for loan of heat, etc. ; but
they agreed so well with each other in very
varied experiments, that the definite transforma-
tion of work into heat was completely established,
and the "dynamical equivalent of heat" determined
with great accuracy. Various other methods of
effecting the transformation of work into heat were
also tried by Joule, and with a like result; such as
using oil, or mercury, instead of water, in the
paddle-wheel experiment ; or, again, expending
work in producing heat by friction of pieces of iron;
or by turning a magnetoelectric) machine, and
measuring the heat generated by the electric cur-
rent so produced, etc.

We can now see that when mechanical energy
is commonly said to be lost, as by unavoidable
friction in machinery, it is really only changed into
a new form of energyheat. Thus the savage
who lights his fire by rubbing together pieces of
dry wood, expends his muscular energy in pro-

At the same time Joule published the fall proof of
the existence of relations of equivalence among the
energies of chemical affinity, heat of combination or
combustion, electrical currents from s galvanic battery
or from a magneto.electrio machine, engines worked by
galvanism, and of all the varied and interchangeable
manifestations of thermal action and mechanical energy
which accompany them. These researches, and °there
(which soon followed) on the theory of animal heat and
motion in relation to the heat of combustion of the food
consumed, and the theory of the phenomena presented
by shooting stars which this naturalist based on true
dynamical principles, have afforded to subsequent
writers the chief groundwork for their speculation on
the dynamical theory of heat.
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ducing heat. By mere hammering, a skilful smith
can heat a piece of iron to redness. In the old
musket, the potential energy of the spring of the
lock becalne, when the trigger was drawn, kinetic
energy of the doghead, and the latter was partly
expended in generating the heat which ignited the
steel sparks which inflamed the powder. Some of
it may have been wasted in splitting the flint, and
some in scratching the lid of the pan, some (as we
shall see presently) certainly was wasted in produc-
ing the sound called the click of the lock.

Curiously enough, although similar coincidences
are common, while Joule was pursuing and publish-
ing his investigations, there appeared in Germanys
paper by Mayer of Heilbronn. Its title is Benerkun-
gen Ober die Krofte der Unbelebten Natur, and its date
1842. In this paper the results obtained by pre-
ceding naturalists are stated with precisionamong
them the fundamental one of Davynew expert.
meats are suggested, and a method for finding the
dynamical equivalent of heat is propounded! On
the strength of this publication an attempt has
been made to claim for Mayer the credit of being
the first to establish in its generality the principle
of the Conservation of Energy. It is true that
"La science n'a pas de patrie," and it is highly
creditable to British philosophers, that they have
so liberally acted according to this maxim. But
it is not to be imagined that on this account there
should be no scientific patriotism, or that in our
desire to do all justice to a foreigner, we should
depreciate or suppress the claims of our own country.
men. And it especially startles us that the recent
attempts to place Mayer in a position which he
never claimed, and which had long before been
taken by another, should have found support
within the very walls wherein Davy propounded
his transcendent discoveries.

Having thur considered the transformation
of mechanical energy into heat, we must next
deal with the converse process, or the pro-
duction of mechanical energy from heat; a pro.

Mayer's method is founded on the supposition that
diminution of the volume of a body implies an evolu-
tion or generation of heat; and it involves essentially a
false analogy between the natural fall of a body to the
earth, and the condensation produced in an elastic fluid
by the application of external force. The hypothesis on
which he thus grounds adefinite numerical estimate of the
relation between the agencies here involved, is that the
heat evolved when an elastic fluid is compressed and kept
cool, is simply the dynamical equivalent of the work em.
ployed in compressing it. The experimental investiga-
tions of subsequent naturalists have shown that this hy.
pothesis is altogether false, for the generality of fluids,
especially liquids, and is at best only approximately true
for air; whereas Mayer's statements imply its indiscrimi.
sate application to all bodies in nature, whether gaseous,
liquid, or solid, and show no reason for choosing air for
the application of the supposed principle to calculation,
but that at the time he wrote air was the only body for
which the requisite numerical data were known with
any approximation to accuracy.

cess to which the steam-engine owes its vast
powers. But here we have no such general theo-
rem as in the former case. Mechanical energy
can always be changed into heat, but to obtain
mechanical energy from heat it is necessary that
we should have bodies of different temperatures ;
so that if all the matter in the universe were at
one temperature it would be impossible, however
great were that temperature, to convert any heat
into work. This is a most important fact, because,
as we shall presently see, it leads to the conclusion
not 'bat the energy in the universe can ever vary in
amount, but that it is gradually becoming uniformly
diffused heat, from which it can never afterwards
be changed. However, granting that bodies of
different temperatures are still procurable, heat in
passing from the warmer to the colder body may
(in part at least) be transformed into some other
form of energy; and in the case of the steam-
engine, that form is the mechanical effect produced
by the expansion of water into vapour by heat; so
that if the whole of the heat expended could be
obtained as " work," we should have 772 foot-
pounds for every portion of applied heat which
was capable of raising the temperature of a pound
of water through one degree of Fahrenheit's scale.
In the best steam-engines, even with every modern
improvement, only about one-tenth is actually so
recovered. All such cases come under the follow-
ing general proposition : When an engine does work
in virtue of heat supplied to it, it emits heat from
some part necessarily cooler than that where the heat
is taken in; but the quantity so emitted is less than the
quantity taken in, by an amount equivalent to eh.
work done. This is universally true, not only for
artificial contrivances, such as the steam-engine,
Stirling's airengine, thermoelectric engines, etc.,
but for every action of dead matter in which the
bodies concerned, if altered by change of tempera-
ture, of volume, of form, or of electric, magnetic,
or chemical condition, are finally restored to their
primitive state.

But whence do we get the heat which gives
motion to the steam-engine, or, in other words,
what was its potential form before it became heat?
Here we answer at once, just as a stone falling to
the earth changes its potential energy for kinetic,
and finally for heat; so coal and the oxygen of the
air, by virtue of their chemical affinity, have po-
tential energy when uncombined, which is changed
into its equivalent in heat as' the combination
takes place. Chemical affinity, then, is a form of
potential, heat of combination or combustion the
equivalent form of kinetic, energy. The heat thus
obtained may be by various means, as the steam-
engine or the air-engine, converted into mechanical
energy. Or the combination may take place, as
Joule has shown in one of his finest discoveries,
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without generating its full equivalent of heat, and
may be directed to spend a large part of its energy
in producing electric currents, and through them
raising weights. This is the case when zinc com-
bines with oxygen in a galvanic battery. The heat
of combination may then appear in the warming
of wires through which the current passes. Or it
may not appear at all, except in very small propor-
tions, and an equivalent of mechanical work done
may be had instead ; as Joule and Scoresby found
when, by their skilled appliance of mechanical and
magnetic means, they prevented the chemical
action from generating more than one-fourth of its
heat, and got the remainder of its energy in the
form of weights raised.

A remarkable result of electric development of
the energy of chemical combination is, that through
it the heatequivalent may be made to appear at
any time however long after, or in any place how-
ever distant from, the combustion. Thus if the
weights raised by an electromagnetic engine driven
by a galvanic battery are allowed to fall, sooner or
later they will generate in striking the ground
the complement of heat till then wanting from the
beat of combination of the " chemicals" which
bad been used. Or if a well insulated electric
conductor were laid where the old Atlantic cable
UN useless (for no other reason than that its insu-
lation was never free from faults), the zinc fire
might burn coolly at Valencia, and develop nine-
tenths of its heat, or an equivalent of energy in
mechanical work, in Newfoundland, wasting the
remainder almost solely in the generation of heat
by electricity escaping through the 2000 miles of
gutta-percha cover. In every electric telegraph a
portion (it may be and generally is only a small
portion) of the energy of combination of oxygen,
with the zinc if a battery is used, or with the
operator's food if the magnetoinductive system is
followed, actually appears first at the remote end
of the wire as visible motions. Ultimately, through
resistances to these motions, or subsidence of the
sounds produced by the impacts of the needles,
after they have told their tale, it becomes beat and
is dissipated through space.

Many observations render it probable that an
animal doing mechanical work does not allow the
chemical combinations which go on between its
food, more or less assimilated, and the oxygen in
baled in its breath, or otherwise introduced into
its system directly or indirectly from our atmos.
phere, to generate their full equivalent of beat in
its body as when resting, but directs a portion of
their energy to be spent immediately in the muscu
lar effort of pressing against external force. If
this were the case, it would follow that dynami-
cally the animalngine is more like the electro-
magnetic machine driven by the electric current

from a galvanic battery, than a steam-engine or
airengine, which takes instil its energy in the form
of heat from a fire. It seems even probable that
it is actually through electric force that the energy
of the food is placed at the disposal of that most
inscrutable of finite, created, and aubject s;ancies,
a free will directing the motions of matter in a
living animal. But whatever may be the true ex-
planation of the means, it is as regards the result,
singularly noteworthy that the construction of the
animal frame enables it to convertmore of a given
amount of potential energy into work than is pro.
curable from the most perfect steam-engine.

The food of animals is, as we have just seen, by
virtue of its chemical composition, and affinity (a
true " attraction") for oxygen, a store of potential
energy. Gunpowder or gun- cotton, by the arrange-
ment of its constituents, is possessed of tremendous
potential energy, which a single spark resolves
into a kinetic form as heat, sound, and the kinetic
energy of a cannon shot. For sound is a motion of
air, air is matter, and thus sound is merely a form
of kinetic energy. In a bayonet charge, then, the
soldier's rations are the potential energy of war ;
in a cavalry charge, we have in addition that of
the forage supplied to the horses ; and when artil-
lery or small arms are used, the potential energy
of a mixture of nitre, sulphur, and charcoal is the
tranquil antecedent of the terrible kinetic effects
of noise and destruction.

But we now come to the grandest question of
all, or at all events to a preliminary stage of it.
Whence do we. immediately derive all those stores
of potential energy which we employ as fuel or
as food? What produces the potential energy of
a loaf or a beefsteak! What supplies the coal or
the water-power, without which our factories must
stop! The answer, going one stage back, is quite
satisfactory. To the Sun we are indebted for
water-power, coal, and animal and vegetable food.
The sun's heat raises the water of seas and lakes
as vapour in the air, to be precipitated as rain
above its original level, and thus to form the store
of potential energy known as a "head" of water.
Kinetic energy, radiated from the sun, enables
plants to separate carbon from oxygen, and so to
become stores of potential energy which, as coal
or vegetable food, may have been treasured for
ages in the earth, or may be consumed annually
as they are produced. And while the sheep and
ox convert part of the potential energy of their
grass or turnips into animal heat and energy, the
rest, stored up as the potential energy of beef and
mutton, becomes in its turn a source of human
energy.

Now, to go yet a step back. Whence does the
sun procure the energy which he thus so continn
ally and so liberally distributes ? To this question
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several answers have been given, one of which may
be disposed of at once, and another will be found
merely to shift, not to resolve the difficulty. The
first of these supposes the sun to be the site of
a great combustion or production of kinetic
from potential energy by chemical combination.
But it has been shown that, even supposing the
mass of the sun to be made up (in the most effec-
tive proportions) of the combination of known
bodies which would give the greatest potential
energy, the whole could scarcely be adequate to
produce 5000 years' radiation at the present rate;
whereas there is abundant geological proof that the
present state of things, if not a higher rate of dis-
tribution of energy from the sun, must have lasted
already many hundreds of thousands of years. The
second supposes the sun to be a white-hot liquid
mass, but does not account for its heat. A third
allows that the sun, all round his surface, if not
throughout his mass, is most probably composed of
melted matter, of a temperature not very many
times greater than can actually be produced in our
laboratories, but accounts for the original produc-
tion, and the present maintenance of that state in
spite of losses through radiation, by what is calledthe
meteoric theory. A fourth, which is probably the
true explanation, agrees with the third as to the
origin of the sun's heat, but supposes the loss by
radiation at present not to be compensated by fresh
influx of meteoric matter. According to this
theory, matter, when created, was diffused irregu-
larly through infinite space, but was endowed with
the attractive force of gravitation, by virtue of
which it gradually became agglomerated into masses
of various sizes, and retaining various amounts of
kinetic energy in the shape of actual motion, which
still appear in the orbital and axial revolutions,
not only of the bodies composing the solar system,
but of those in stellar systems also. The tempera-
ture produced by collisions, etc., would not only
be in general higher for the larger bodies, but they
would, of course, take longer to cool ; and hence,
our e. rth, though probably in bygone ages a little
sun, r- 'sins but a slight amount of its original heat,
at let in its superficial strata, while the sun still
shines vith brilliance perhaps little impaired. Sup-
plies of energy are, no doubt, yet received continu-
ally by the sun, on its casual meeting with masses
traversing space, or the falling in of others revolv-
ing about it just as, on an exceedingly small scale,
the earth occasionally gets a slight increase of kin-
etic energy by the impact of a shooting star or
aerolite. In this sense it is easily calculable that
the direct fall of the earth to the sun would supply
the latter with energy equivalent to ninety-five
years' loss at the present rate. But it is not pro-
bable that the sun receives in this way more than
a very small proportion of the heat which be emits

by radiation. He must therefore at present be in
the condition of a heated body cooling. But being
certainly liquid for a great depth all round his sur-
face, if not throughout, the superficial parts must
sink by becoming heavier as they contracb through
cooling. The currents thus produced, bringing
fresh portions from below to the surface, and keep.
ing all the liquid thoroughly stirred up, must dis-
tribute the loss of heat very equably throughout
the whole liquid mass, and so prevent the surface
from cooling quickly, as it certainly would do if
the superficial stratum were solid. So vast is the
capacity of such a MOM for heat, when under the
influence of the enormous pressure produced in the
interior by mutual gravitation of the parts, that if
the sun is liquid to his centre, he may emit, as it
has been estimated, from seven to seven thousand
years' beat at the present rate before his average
temperature can go down by one degree Fahren-
heit.

This view of the possible origin of energy at
creation is excessively instructive. Created simply
as difference of position of attracting masses, the
potential energy of gravitation was the original
form of all the energy in the universe ; and as we
have seen that all energy tends ultimately to be-
come heat, which cannot be transformed without
a new creative act into any other modification, we
must conclude that when all the chemical and
gravitation energies of the universe have taken
their final kinetic form, the result will be an ar-
rangement of matter possessing no realizable poten-
tial energy, but uniformly hotan =distinguish-
able mixture of all that is now definite and
separatechaos and darkness as " in the begin.
ming." But before this consummation can be
attained, in the matter of our solar system, there
must be tremendous throes and convulsions, de-
stroying every now existing form. As surely as
the weights of a clock run down to their lowest
position, from which they can never rise again, un-
less fresh energy is communicated to them from
some source rot yet exhausted, so surely must
planet after planet creep in, age by age, towards
the sun. When each comes within a few hundred
thousand miles of his surface, if he is still incan-
descent, it must be melted and driven into vapour
by radiant heat. Nor, if he has crusted over and
become dark and cool externally, can the doomed
planet escape its fiery end. If it does not become
incandescent like a shootingstar by friction in its
passage through his atmosphere, its first graze on
his solid surface must produce a stupendous flash
of light and beat. It may be at once, or it may
be after two or three bounds, like a cannon-shot
ricochetting on a surface of earth or water, the
whole MIN must be crushed, melted, and evapo-
rated by a crash generating in a moment some
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thousands of times SA much heat as a coal of the
same size could produce by burning.

Thus we have the sober scientific certainty that
heavens and earth shall " wax old as doth a gar-
ment ;" and that this slow progress must gradu-
ally, by natural agencies which we see going on
under fixed laws, bring about circumstances in
which "the elements shall melt with fervent heat."
With such views forced upon us by the contempla.
tion of dynamical energy and its laws of transfor-
mation in dead matter, dark indeed would be the
prospects of the human race if nniMminea by that
light which reveals "new heavens and a new
earth."

We have not made in the foregoing pages any
but the slightest allusions to-the remaining known
forms of energy, such as light, electric motion, etc.
Nor have we examined into the nature and effects
of the so -called vital force. All that we need at
present say of them is, that, as far as experiment
has yet taught us, nothing known with regard to
them can modify the preceding conclusions. For,
as we may show in a future paper, light, electrio
motion, and all other forms of energy, ultimately
become heat, and, therefore, though the progress
of energy through these various stages may modify
the course of events, it cannot in the least affect
their inevitable termination.
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4 The Barometer Story

AlLxander Calandra

1964

COME time ago, I received a callSOME
a colleague who asked if I

would be the referee on the grading
of an examination question. It seemed
that he was about to give a student
a zero for his answer to a physics ques-
tion, while the student claimed he
should receive a perfect score and
would do so if the system were not set
up against the student. The instructor
and the student agreed to submit this
to an impartial arbite:, and I was
selected.

The Barometer Problem

I went to my colleague's office and
read the examination question, which
was, "Show how it is possible to deter-
mine the height of a tall building with
the aid of a barometer."

The student's answer was, "Take the
barometer to the top of the building,
attach a long rope to it, lower the ba-
rometer to the street, and then bring
it up, measuring the length of the rope.
The length of the rope is the height of
the building."

Now, this is a very interesting an-
swer, but should the student get credit
for it? I pointed out that the student
really had a strong case for full credit,
since he had answered the question
completely and correctly. On the other
hand, if full credit were given, it could
well contribute to a high grade for the
student in his physics course. A high
grade is supposed to certify that the
student knows some physics, but the
answer .to the question did not con-
firm this. With this in mind, I suggested
that the student have another try at
answering the question, I was not sur-
prised that my colleague agreed to

this, but I was surprised that the stu-
dent did.

Acting in terms of the agreement, I
gave the student six minutes to an-
swer the question, with the warning
that the answer should show some
knowledge of physics. At the end of
five minutes, he had not written any-
thing. I asked if he wished to give up,
since I had another class to take care
of, but he said no, he was not giving
up. He had many answers to this prob-
lem; he was just thinking of the best
one. I excused myself for interrupting
him, and asked him to please go an.
In the next minute, he dashed off his
answer, which was:

"Take the barometer to the top of
the building and lean over the edge of
the roof. Drop the barometer, timing
its fall with a stopwatch. Then, using
the formula S = % ate, calculate the
height of the building."

At this point, I asked my colleague
if he would give up. He conceded and
I gave the student almost full credit. In
leaving my colleague's office, I recalled
that the student had said he had other
answers to the problem, so I asked
him what they were. "Oh, yes," said
the student. "There are many ways of
getting the height of a tall building
with the aid of a barometer. For ex-
ample, you could take the barometer
out on a sunny day and measure the
height of the barometer, the length of
its shadow, and the length of the shad-
ow of the building, and by the use
of simple proportion, determine the
height of the building."

"Fine," I said. "And the others?"
"Yes," said the student. "There is a

very basic measurement method that

you will like. In this method, you take
the barometer and begin to walk up
the stairs. As you climb the stairs, you
mark off the length of the barometer
along the wall. You then count the
number of marks, and this will give
you the height of the building in ba-
rometer units. A very direct method,

"Of course, if you want a more
sophisticated method, you can tie the
barometer to the end of a string; swing
it as a pendulum, and determine the
value of 'g' at the street level and at
the top of the building. From the dif-
ference between the two values of 'g,'
the height of the building can, in prin-
ciple, be calculated."

Finally he concluded, "If you don't
limit me to physics solutions to this
problem, there are many other an-
swers, such as taking the barometer to
the basement and knocking on the
superintendent's door. When the
superintendent answers, you speak to
him as follows: 'Dear Mr. Superin-
tendent, here I have a very fine ba-
rometer. If you will tell me the height
of this building, I will give you this
barometer,'"

At this point, I asked the student if
he really didn't know the answer to
the problem. He admitted that he did,
but that he was so fed up with college
instructors trying to teach him how
to think and to use critical thinking,
instead of showing him the structure
of the subject matter, that he decided
to take off on what he regarded mostly
as a sham.

1

31



The kinetic theory of gases is a marvelous structure of
interconnecting assumption, prediction, and experiment.
This chapter supplements and reinforces the discussion
of kinetic theory in the text of Unit 3.

5 The Great Molecular Theory of Gases

Eric M. Rogers

1960

Newton's theory of universal gravitation was a
world-wide success. His book; the Principia, ran
into three editions in his lifetime and popular studies
of it were the fashion in the courts of Europe.
Voltaire wrote an exposition of the Principle for
the general reader; books were even published on
"Newton's Theory expounded to Ladies ?' Newton's
theory impressed educated people not only as a
brilliant ordering of celestial Nature but as a model
for other grand explanations yet to come. We con-
sider Newton's theory a good one because it is
simple and productive and links together many
different phenomena, giving a general feeling of
understanding. The theory is simple because its
basic assumptions are a few clear statements. This
simplicity is not spoiled by the fact that some of
the deductions need difficult mathematics. The suc-
cess of Newton's planetary theory led to attempts
at more theories similarly based on the laws of
motion. For example, gases seem simple in behavior.
Could not some theory of gases be constructed, to
account for Boyle's Law by "predicting" it, and to
make other predictions and increase our general
understanding?

Such attempts led to a great molecular theory of
gases. As in most great inventions the essential dis-
covery is a single idea which seems simple enough
once it is thought of: the idea that gas pressure is
due to bombardment by tiny moving particles, the
"molecules" of gas. Gases have simple common
properties. They always fill their container and
exert a uniform pressure all over its top, bottom, and
sides, unlike solids and liquids. At constant tempera-
ture, PRESSURE VOLUME remains constant, however
the gas is compressed or expanded. Heating a gas
increases its pressure or volume or bothand the
rate of increase with temperature is the same for all
gases ("Charles' Law"). Cases move easily, diffuse
among each other and seep through porous walls.

Could these properties be "explained" in terms of
some mechanical picture? Newton's contemporaries
revived the Greek philosophers idea of matter being
made of "fiery atoms" in constant motion. Now, with
a good system of mechanics they could treat such a
picture realistically and ask what "atoms" would do.
The most striking general property that a theory
should explain was Boyle's Law.

Boyle's Law

In 1681 Boyle announced his discovery, "not
without delight and satisfaction" that the pressures
and volumes of air are "in reciprocal proportions."
That was his way of saying: PRESSURE cc livommE
or PRESSURE VOLUME remains constant, when air is
compressed. It was well known that air expands
when heated, so the restriction "at constant tempera-
ture" was obviously necessary for this simple law.
This was Boyle's discovery of the "spring of the
air"a spring of variable strength compared with
solid Hooke's Law springs.

In laboratory you should try a "Boyle's-Law
experiment" with a sample of dry air, not to "dis-
cover" a law that you already know, but as a prob-
lem in precision, your skill against nature." You
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will be limited to a small range of pressures (say
l atmosphere to 2 atm.) and your accuracy may
be sabotaged by the room temperature changing
or by a slight taper in the glass tube that contains
the sample.1 If you plot your measurements on a
graph showing PRESSURE vs. VOLUME you will find
they mark a hyperbolabut that is too difficult a
curve to recognize for sure and claim as verification
of Boyle's Law.2 Then plot PRESSURE US. 1 /voLuME
and look for a straight line through the origin.

Boyle's measurements were fairly rough and ex-
tended only from a fraction of an atmosphere to
about 4 atm. If you make precise measurements
with air you will find that pV changes by only a few
tenths of 1% at most, over that range. Your graph of
p vs. 1/V will show your experimental points very
close to a straight line through the origin. Since
mAss/vouumE is density and MASS is constant, values
of 1/V represent DENsrrY, and Boyle's Law says

-HIGH TEMP -
-ROOM TEMP- 4- --

LOW TEMP. 4 --

V V
: ie. 25-2. BOYLE'S LAW ISOTHERMAL!

PRESSURE cc DENSITY. This makes sense on many a
simple theory of gas molecules: "put twice as many
molecules in a box and you will double the pressure."

All the measurements on a Boyle's-Law graph
line are made at the same temperature: it is an
isothermal line. Of course we can draw several iso-
thermals on one diagram, as in Fig. 25-2.

If the range of pressure is increased, larger devia-
tions appearBoyle's simple law is only an approxi-
mate account of real gas behavior. It fire well at low
pressures but not at high pressures whr- the sample
is crowded to high density. Fig. 25-Z; shows the

I Even modern glass tubing is slightly tapered, unless made
uniform by an expensive process; so when experiihents "to
verify Boyle's Law" show deviations from pV = constant they
are usually exhibiting tube-taper rather than :misbehavior of
air. If the air sample is replaced by certain other gases such
as CO:, or by some organic vapor, real deviations from
Boyle's Law become obvious and interesting. See Ch. 30.

2 The only safe shapes of graphs for testing a law, or find-
ing one, are straight lines and circles.
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experimental facts for larger pressures, up to 3000
atmospheres. (For graphs of COI's behavior, in-
cluding liquefaction, see Ch. 30.)

Theory

Boyle tried to guess at a mechanism underlying
his experimental law. As a good chemist, he pic-
tured tiny atomic particles as the responsible agents.
He suggested that gas particles might be springy,
like little balls of curly wool piled together, resisting
compression. Newton placed gas particles farther
apart, and calculated a law of repulsion-force to
account for Boyle's Law. D. Bernoulli published a
bombardment theory, without spec:01 force-laws,
that predicted Boyle's Law. He pointed out that
moving particles would produce presswe by bom-
barding the container; and he suggested that heating
air must make its particles move faster. This was the
real beginning of our present theory. He made a
brave attempt, but his account was incomplete.
A century later, in the 1840's, Joule and others set
forth a successful "kinetic theory of gases," on this
simple basic view:

A gas con, fists of small elastic particles in
rapid motion: and the pressure on the walls
is simply the effect of bombardment.

Joule showed that this would "explain" Boyle's Law,
and that it would yield important information about
the gas particles themselves. This was soon polished
by mathematicians and physicists into a large,
powerful theory, capable of enriching our under-
standing.

In modern theories, we call the moving particles
molecules, a name borrowed from chemistry, where
it means the smallest particle of a substance that
exists freely. Split a molecule and you have separate
atoms, which may have quite different properties
from the original substance. A molecule of water,
H20, split into atoms yields two hydrogen atoms
and one oxygen atom, quite different from the par-
ticles or molecules of water. Left :lime, these sepa-
rated atoms gang up in pairs, 4,, 0.--molecules of
hydrogen and oxygen gas. In kinetic theory, we deal
with the complete molecules, and assume they are
not broken up by collisions. And we assume the
molecule; exert no forces on each other except
during collisions; and then, when they are very
close, they exert strong repulsive forces for a very
short time: in fact that is all a collision is.

You yourself have the necessary tools for con-
structing a molecular theory of gases. Try it. Assume
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that gas pressure is due to molecules bouncing
elastically on the containing walls. Carry out the
first stages by wurking through Problems 1 and 2.
They start with a bouncing ball and graduate to

many bouncing molecules, to emerge with a pre-
diction of the behavior of gases. After you have
tried the problems, return to the discussion of de-
tails.
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o
m
e
n
t
u
m
 
o
f
 
o
n
e
 
b
a
l
l
 
i
s

N
O
T
E
:

u
n
i
t
s

A
N
S
W
E
R

(
i
v
)
 
.
'
.
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
s
u
f
f
e
r
e
d
 
b
y
 
w
a
l
l
.
 
i
s

I
S
 
N
O
T

u
n
i
t
s

Z
E
R
O

(
v
)
 
I
f
,
 
d
u
r
i
n
g
 
1
0
 
s
e
c
o
n
d
s
,
 
1
0
0
0
 
b
a
l
l
s
 
s
t
r
i
k
e
 
t
h
e
 
w
a
l
l
 
a
n
d
 
r
e
b
o
u
n
d
 
t
h
u
s
,

t
o
t
a
l
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
=
 
s
u
f
f
e
r
e
d
 
b
y
 
v
e
i
l
 
i
s

(
v
i
)
 
.
*
.
 
A
v
e
r
a
g
e
 
f
o
r
c
e
 
o
n
 
=
1
1
 
d
u
r
i
n
g
 
t
h
e

1
0
-
s
e
c
o
n
d
 
p
e
r
i
o
d
 
i
s
 
.

.

u
n
i
t
s

un
its

=
i
t
s

u
n
i
t
s

(
v
i
i
)
 
I
f
 
t
h
e
 
1
0
0
0
 
b
a
l
l
s
 
b
i
t
 
&
p
a
t
c
h
 
o
f
 
w
a
l
l
 
2
 
m
e
t
e
r
s
 
h
i
g
h
 
b
y
 
3
 
m
e
t
e
r
s
 
v
i
d
e
,
 
a
v
e
r
a
g
e

P
I
U
T
H
H
H
H
E
 
(
.
 
P
O
R
C
E
/
A
R
E
A
)
 
o
n
 
t
h
a
t
 
p
a
t
c
h
 
i
s

un
its



S
P
E
C
I
A
L
 
P
R
O
B
I
E
N
C
 
O
N
 
M
D
L
E
C
U
L
A
R
 
=
C
O
R
Y

S
U
E
T
 
3

P
R
O
B
L
E
M
 
1
.
 
(
c
o
n
t
i
n
u
e
d
)

I
I
I
.

N
O
T
I
O
N
 
I
N
S
I
D
E
 
L
.
 
B
O
X
.
 
B
e
f
o
r
e
 
c
h
a
n
g
i
n
g
 
f
r
e
e
 
b
o
u
n
c
i
n
g
 
b
a
l
l
s
 
t
o
 
b
o
u
n
c
i
n
g

m
o
l
e
c
u
l
e
s
,
 
v
e
 
m
u
s
t
 
p
u
t
 
t
h
e
 
m
o
v
i
n
g
 
t
h
i
n
g
s
 
i
n
s
i
d
e
 
a
 
c
l
o
s
e
d
 
b
o
y
.

f
t
.
T
p
o
s
e
 
v
e

h
a
v
e
 
a
n
 
o
b
l
o
n
g
 
b
o
x
,
 
4
 
m
e
t
e
r
s
 
l
o
n
g
 
f
r
o
m
 
e
n
d
 
t
o
 
e
n
d
,
 
w
i
t
h
 
o
n
l
y
 
o
n
e
 
b
a
l
l
 
i
n
 
i
t
 
m
o
v
i
n
g

t
o
-
a
n
d
-
f
r
o
 
f
r
o
m
 
e
n
d
 
t
o
 
e
n
d
 
w
i
t
h
 
s
p
e
e
d
 
1
2
 
m
e
t
e
r
s
/
s
e
c
.
 
T
h
e
 
t
a
l
l
 
h
i
t
s
 
e
a
c
h
 
e
n
d

L
e
a
d
-
o
n
 
a
n
d
 
r
e
b
o
u
n
d
s
 
w
i
t
h
 
s
p
e
e
d
 
1
2
 
m
e
t
e
r
s
/
s
e
c
 
t
o
 
t
h
e
 
o
t
h
e
r
 
e
n
d
.

N
o
v
 
t
h
e
 
s
a
m
e
 
b
e
l
l

v
1
1
1
 
h
i
t
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
o
f
 
t
h
e
 
b
o
x
 
s
e
e
r
 
t
i
m
e
s
 
i
n
 
t
e
n
 
s
e
c
o
n
d
s
.

I
n
s
t
e
a
d
 
o
f
 
u
s
i
n
g
 
t
h
e

n
u
m
b
e
r
 
o
f
 
b
a
l
l
s
 
h
i
t
t
i
n
g
 
t
h
e
 
w
e
l
l
,
 
w
e
 
m
u
s
t
 
c
a
l
c
u
l
a
t
e
 
a
n
d
 
u
s
e
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
h
i
t
s
 
m
o
d
e

b
y
 
t
h
i
s
 
o
n
e
 
b
a
l
l
.
 
T
o
 
f
i
n
d
 
f
o
r
c
e
 
o
n
 
o
n
e
 
e
n
d
,
 
w
e
 
u
s
e
 
t
h
e
 
h
i
t
s
 
o
n
 
t
h
a
t
 
e
n
d
 
o
n
l
y
.

(
1
)
 
B
e
t
w
e
e
n
 
s
u
c
c
e
s
s
i
v
e
 
h
i
t
s
 
o
n
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
o
f
 
t
h
e
 
b
o
x
 
t
h
e
 
b
e
l
l
 
t
r
a
v
e
l
s
 
o
n
e

"
r
o
u
n
d
 
t
r
i
p
.
"

I
t
 
t
r
a
v
e
l
s
 
t
h
e
 
w
h
o
l
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
b
o
x
 
f
r
o
m
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
t
o

t
h
e
 
o
t
h
e
r
 
e
n
d
 
a
n
d
 
b
a
c
k
 
t
o
 
t
h
e
 
f
r
o
n
t
 
e
n
d
.
 
S
o
 
i
t
 
t
r
a
v
e
l
s

r
a
s
t
e
r
s

(
i
i
)
 
W
i
t
h
 
i
t
s
 
s
p
e
e
d
 
o
f
 
1
2
 
m
e
t
e
r
s
/
s
e
c
,
 
t
h
e
 
t
o
t
a
l
 
d
i
s
t
a
n
c
e

t
h
e
 
b
e
l
l
 
t
r
a
v
e
l
s
 
i
n
 
1
0
 
s
e
c
o
n
d
s
 
i
s

m
e
t
e
r
s

(
1
1
1
)

t
h
e
 
n
u
m
b
e
r
 
o
f
 
r
o
u
n
d
 
t
r
i
p
s
 
t
h
e
 
b
e
l
l
 
s
a
k
e
s

i
n
 
1
0
 
s
e
c
o
n
d
s
 
i
s
 
.

.
.

M
i
n
d
 
t
r
i
p
e

(
i
v
)

I
n
,
1
0
 
s
e
c
o
n
d
s
 
t
h
e
 
n
u
m
b
e
r
 
o
f
 
h
i
t
s
 
t
h
e
 
b
e
l
l
 
w
a
k
e
s

o
n
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
i
s
 
.
 
.
 
.

(
S
o
 
i
f
 
w
e
 
v
e
n
t
 
t
o
 
h
a
v
e
 
1
0
0
0
 
h
i
t
s
 
o
n
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
w
e
l
l
 
i
n
 
1
0
 
s
e
c
,
 
a
s
 
i
n

I
I
 
a
b
o
v
e
,
 
v
e
 
n
e
e
d
 
m
o
r
e
 
t
h
a
n
 
o
n
e
 
b
a
l
l
 
i
n
 
t
h
e
 
b
o
x
.

I
n
 
f
a
c
t
 
w
e
 
n
e
e
d
 
a
b
o
u
t

b
e
l
l
s

a
l
l
 
m
o
v
i
n
g
 
t
o
-
a
n
d
-
f
r
o
 
b
e
t
w
e
e
n
 
t
h
e
 
e
n
d
s
.
)

(
v
)
 
A
t
 
e
a
c
h
 
h
i
t
 
o
n
 
t
h
e
 
f
r
o
n
t
 
e
n
d
,
 
t
h
e
 
s
i
n
g
l
e
 
b
e
l
l

s
u
f
f
e
r
s
 
a
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
.
 
.

.
.

(
v
i
)

i
n
 
1
0
 
s
e
c
s
 
t
h
e
 
b
e
l
l
 
m
a
l
e
s

h
i
t
s
 
o
n
 
f
r
o
n
t
 
e
n
d
 
o
f
 
b
o
x
,

s
u
f
f
e
r
i
n
g
 
a
 
m
o
m
e
n
t
u
m
r
c
h
a
n
g
e
 
o
f

t
h
e
 
t
o
t
a
l
 
m
o
m
e
n
t
u
m
r
c
h
a
n
g
e
 
s
u
f
f
e
r
e
d
 
b
y

f
r
o
n
t
-
e
n
d
 
o
f
 
b
o
x
 
i
n
 
1
0
 
s
e
c
o
n
d
s
 
i
s

.
*
.
 
a
v
e
r
a
g
e
 
f
o
r
c
e
 
o
n
 
f
r
o
n
t
 
e
n
d
 
d
u
r
i
n
g

u
n
i
t
s

a
t
 
e
a
c
h
 
h
i
t
.

u
n
i
t
s

t
h
e
 
1
0
.
s
e
c
o
n
d
 
p
e
r
i
o
d
 
i
s

(
P
R
I
S
M
 
I
s
 
g
i
v
e
n
 
b
y
 
P
O
N
C
E
/
A
N
E
A
:
 
a
n
d
 
i
f
 
y
o
u
 
k
n
e
v
 
t
h
e
 
a
r
e
a
 
o
f
 
t
h
e
 
f
r
o
n
t
 
e
n
d

y
o
u
 
c
o
u
l
d
 
c
a
l
c
u
l
a
t
e
 
t
h
e
 
(
a
v
e
r
a
g
e
)
 
p
r
e
s
s
u
r
e
 
o
n
 
i
t
 
C
O
M
M
.
:
1
W
 
t
h
e
 
r
e
p
e
a
t
e
d

i
m
p
a
c
t
s
 
o
f
 
t
h
e
 
b
e
l
l
.

I
n
 
t
h
i
s
 
c
a
s
e
 
o
f
 
a
 
s
i
n
g
l
e
 
l
a
r
g
e
 
b
e
l
l
 
t
h
e
 
p
r
e
s
s
u
r
e
 
i
s

n
o
t
 
a
 
s
e
n
s
i
b
l
e
 
t
h
i
n
g
 
t
o
 
c
a
l
c
u
l
a
t
e
;
 
b
u
t
 
y
o
u
 
c
a
n
 
m
a
k
e
 
t
h
e
 
c
a
l
c
u
l
a
t
i
o
n
 
f
o
r

m
o
l
e
c
u
l
e
s
 
a
n
d
 
t
h
u
 
p
r
e
d
i
c
t
 
t
h
e
 
p
r
e
s
s
u
r
e
 
o
f
 
a
 
g
a
s
.
)

u
n
i
t
s

u
n
i
t
s

S
P
E
C
I
A
L
 
P
R
O
B
L
E
M
S
 
O
N
 
M
U
S
C
U
L
A
R
 
T
E
C
O
R
7

S
H
E
E
T
 
4

M
I
N
A
,
 
(
c
o
n
t
i
n
u
e
d
)

W
e
 
n
o
w
 
a
p
p
l
y
 
a
 
s
i
m
i
l
a
r
 
c
a
l
c
u
l
a
t
i
o
n
 
t
o
 
g
a
s
 
m
o
l
e
c
u
l
e
s
 
i
n
 
a
 
b
o
x
.

l
a
t
e
r
 
w
e
 
s
h
a
l
l

r
e
p
e
a
t
 
i
t
 
w
i
t
h
 
a
l
g
e
b
r
a
 
(
P
r
o
b
l
e
m
 
2
.
)

I
V
.

O
A
S
 
M
O
L
E
C
U
L
E
 
I
N
 
A
 
B
O
X
.
 
A
 
m
e
t
a
l
 
b
o
x
,
 
4
 
m
e
t
e
r
s
 
l
o
n
g
,
 
w
i
t
h
 
e
n
d
s
 
3
 
m
e
t
e
r
s
 
b
y

2
 
m
e
t
e
r
s
,
 
c
o
n
t
a
i
n
s
 
o
n
e
 
v
s
 
m
o
l
e
c
u
l
e
 
w
h
i
c
h
 
s
a
v
e
s
 
t
o
-
a
n
d
-
f
r
o
 
a
l
o
n
g
 
t
h
e
 
l
e
n
g
t
h

w
i
t
h
 
s
p
e
e
d
 
5
0
0
 
m
e
t
e
r
s
/
s
e
c
,
 
b
o
u
n
c
i
n
g
 
b
a
c
k
 
e
l
a
s
t
i
c
a
l
l
y
 
a
t
 
e
a
c
h
 
e
n
d
.

T
h
e
 
m
o
l
e
c
u
l
e

a
p
p
r
o
a
c
h
e
s
 
o
n
e
 
e
n
d
 
w
i
t
h
 
s
p
e
e
d
 
5
0
0
 
m
e
t
e
r
s
/
s
e
c
,
 
h
i
t
s
 
i
t
,
 
a
n
d
 
b
o
u
n
c
e
s
 
b
a
c
k
 
w
i
t
h
 
s
p
e
e
d

5
0
0
 
m
e
t
e
r
s
/
s
e
c
,
 
t
r
a
v
e
l
s
 
t
o
 
t
h
e
 
o
t
h
e
r
 
e
n
d
,
 
h
i
t
s
 
t
h
a
t
 
a
n
d
 
r
e
b
o
u
n
d
s
 
m
o
v
i
n
g
 
f
o
r
w
a
r
d

5
0
0
 
m
e
t
e
r
s
/
s
e
c
.
 
T
h
e
 
m
a
s
s
 
o
f
 
t
h
e
 
m
o
l
e
c
u
l
e
 
i
s
 
a
p
p
r
o
x
i
m
a
t
e
l
y
 
5
 
x
1
0
-
2
6
 
k
i
l
o
g
r
a
m
s
.
*

(
I
)
 
T
h
e
 
m
o
l
e
c
u
l
e
'
s
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
w
h
e
n

i
t
 
h
i
t
s
 
t
h
e
 
f
i
r
s
t
 
e
n
d
 
a
n
d
 
r
e
b
o
u
n
d
s
 
i
s
.

.
.

u
n
i
t
s

(
i
i
)
 
I
n
 
1
0
 
s
e
c
o
n
d
s
 
t
h
e
 
m
o
l
e
c
u
l
e
 
t
r
a
v
e
l
s
 
t
o
t
a
l
 
d
i
s
t
a
n
c
e
.
 
.

.
m
e
t
e
r
s

(
i
i
i
)
 
B
e
t
w
e
e
n
 
s
u
c
c
e
s
s
i
v
e
 
i
m
p
a
c
t
s
 
o
n
 
t
h
e
 
f
i
r
s
t
 
e
n
d
,
 
m
o
l
e
c
u
l
e
 
h
a
s
 
t
o
 
t
r
a
v
e
l
 
t
o

o
t
h
e
r
 
e
n
d
 
a
n
d
 
b
a
c
k
,
 
s
o
 
t
r
a
v
e
l
s
 
a
 
d
i
s
t
a
n
c
e

m
e
t
e
r
s

(
i
v
)

l
n
 
1
0
 
s
e
c
o
n
d
s
,
 
m
o
l
e
c
u
l
e
 
c
a
n
 
m
a
k
e

t
r
i
p
e
 
t
o
-
a
n
d
-
f
r
o
,

a
n
d
 
s
o
 
c
a
n
 
m
a
k
e
 
t
h
i
s
 
n
u
m
b
e
r
 
o
f
 
i
m
p
a
c
t
s
 
o
n
 
t
h
e
 
f
i
r
s
t
 
e
n
d
.

(
v
)

i
n
 
1
0
 
s
e
c
o
n
d
s
,
 
t
h
e
 
m
o
l
e
c
u
l
e
 
s
a
k
e
s

i
m
p
a
c
t
s
 
o
n
 
t
h
e

f
i
r
s
t
 
e
n
d
 
o
f
 
t
h
e
 
b
o
x
,
 
s
u
f
f
e
r
i
n
g
 
a
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
a
t
 
e
a
c
h

i
m
p
a
c
t
 
o
f

(
v
1
)

t
o
t
a
l
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
s
u
f
f
e
r
e
d
 
b
y

f
i
r
s
t
 
e
n
d
 
-
w
a
l
l
 
o
f
 
b
o
x
 
i
n
 
1
0
 
s
e
c
o
n
d
s
 
i
s

(
v
i
i
)

a
v
e
r
a
g
e
 
F
O
R
C
E
,
 
d
u
r
i
n
g
 
1
0
 
s
e
c
o
n
d
 
p
e
r
i
o
d
,

o
n
 
f
i
r
s
t
 
e
n
d
 
o
f
 
b
o
x
 
i
s

u
n
i
t
s

u
n
i
t
s

u
n
i
t
s

(
v
i
i
i
)
 
P
R
E
S
S
U
R
E
 
I
s
 
F
O
R
C
E
/
A
R
E
A
.

T
h
e
 
e
n
d
 
w
e
l
l
 
h
a
s
 
a
r
e
a
 
3
 
x
 
2
 
s
q
.
 
m
e
t
e
r
s
.

a
v
e
r
a
g
e
 
P
R
E
S
S
U
R
E
 
o
n
 
e
n
d
 
w
a
l
l
 
i
s

u
n
i
t
s

*
N
O
T
E
:

S
i
m
p
l
e
 
c
h
e
m
i
c
a
l
 
m
e
a
s
u
r
e
m
e
n
t
s
 
s
u
g
g
e
s
t
 
t
h
a
t
 
t
h
e
 
o
x
y
g
e
n
 
a
n
d
 
n
i
t
r
o
g
e
n
 
m
o
l
e
c
u
l
e
s

(
o
f
 
a
i
r
)
 
a
r
e
 
r
o
u
g
h
l
y
 
3
0
 
t
i
m
e
s
 
a
s
 
m
a
s
s
i
v
e
 
a
s
 
a
 
h
y
d
r
o
g
e
n
 
a
t
o
m
.

D
i
f
f
i
c
u
l
t

p
h
y
s
i
c
a
l
 
m
e
a
s
u
r
e
m
e
n
t
s
 
t
e
l
l
 
u
s
 
t
h
a
t
 
a
 
h
y
d
r
o
g
e
n
 
a
t
o
m
 
h
a
s
 
m
a
s
s
 
1
.
6
7
 
x
 
1
0
'
4
1
 
k
i
l
o
g
r
a
m
s
.

S
o
 
t
h
e
 
m
o
l
e
c
u
l
a
r
 
m
a
s
s
 
s
u
g
g
e
s
t
e
d
 
h
e
r
e
,
 
5
 
x
 
1
0
-
2
°
 
k
i
l
o
g
r
a
m
s
,
 
i
s
 
a
 
f
a
i
r
 
v
a
l
u
e
 
f
o
r
 
a
i
r
.



S
P
E
C
I
A
L
 
P
E
O
N
?
.

O
N
 
M
O
L
E
a
l
l
A
R
 
T
H
E
O
R
Y

sz
er

r
5

P
R
O
B
L
E
M
 
1
.
 
(
c
o
n
t
i
n
u
e
d
)

V
.
 
M
A
N
Y
 
G
A
S
 
M
O
L
E
C
U
L
E
S
 
I
N
 
A
 
B
O
X

(
1
)
 
N
o
v
 
s
u
p
p
o
s
e
 
t
h
a
t
 
t
h
i
s
 
b
o
x
 
c
o
n
t
a
i
n
s
 
6
 
x
 
1
0
2
6
 
m
o
l
e
c
u
l
e
s

(
-
 
6
0
1
0
,
0
0
0
,
0
0
0
m
o
m
0
0
4
0
0
0
0
,
4
0
4
0
0
,
1
=
,
0
4
0
0
)
.

T
h
a
t
 
i
n
 
r
o
u
g
h
l
y
 
t
h
e
 
a
c
t
u
a
l
 
n
u
m
b
e
r
 
i
n

s
u
c
h
 
a
 
b
o
x
 
i
f
 
f
i
l
l
e
d
 
w
i
t
h
 
a
i
r
 
a
t
 
a
t
m
o
s
p
h
e
r
i
c
 
p
r
e
s
s
u
r
e
.
 
I
n
 
r
e
a
l
i
t
y
 
t
h
e
s
e
 
w
o
u
l
d
 
b
e

m
o
v
i
n
g
 
a
b
o
u
t
 
i
n
 
a
l
l
 
d
i
r
e
c
t
i
o
n
s
 
a
t
 
r
a
n
d
o
m
;
 
b
u
t
 
t
o
 
s
i
m
p
l
i
f
y
 
t
h
e
 
c
a
l
c
u
l
a
t
i
o
n
 
p
r
e
t
e
n
d

t
h
e
y
 
a
r
e
 
s
o
r
t
e
d
 
o
u
t
 
i
n
t
o
 
t
h
r
e
e
 
r
e
g
i
m
e
n
t
e
d
 
g
r
o
u
p
s
,
 
o
n
e
 
l
o
t
 
m
o
v
i
n
g
 
u
p
-
a
n
d
-
d
o
w
n
,
 
o
n
e

l
o
t
 
t
o
-
a
n
d
-
f
r
o
 
a
l
o
n
g
 
t
h
e
 
l
e
n
g
t
h
,
 
a
n
d
 
o
n
e
 
l
o
t
 
m
o
v
i
n
g
 
t
o
-
a
n
d
-
f
r
o
 
a
c
r
o
s
s
 
t
h
e
 
w
i
d
t
h
.

S
y
m
m
e
t
r
y
 
c
o
n
s
i
d
e
r
a
t
i
o
n
s
 
s
u
g
g
e
s
t
 
w
e
 
s
h
o
u
l
d
 
h
a
v
e
 
t
h
e
 
m
o
l
e
c
u
l
e
s
 
e
q
u
a
l
l
y
 
d
i
v
i
d
e
d
 
a
m
o
n
g

t
h
e
 
t
h
r
e
e
 
g
r
o
u
p
s
 
(
F
I
G
.
 
2
5
-
5
)
.
 
T
h
e
 
p
r
e
s
s
u
r
e
 
o
n
 
a
n
 
E
N
D
 
o
f
 
t
h
e
 
b
o
x
 
w
i
l
l
 
b
e
 
s
o
l
e
l
y
 
d
u
e
 
t
o

i
m
p
a
c
t
s
 
o
f
 
m
o
l
e
c
u
l
e
s
 
m
o
v
i
n
g
 
t
o
-
a
n
d
-
f
r
o
 
a
l
o
n
g
 
t
h
e
 
l
e
n
g
t
h
.

W
e
 
n
o
w
 
p
r
o
c
e
e
d
 
t
o
 
c
a
l
c
u
l
a
t
e

t
h
a
t
 
p
r
e
s
s
u
r
e
,
 
a
s
s
u
m
i
n
g
 
t
h
e
r
e
 
a
r
e
 
o
n
l
y
 
o
n
e
-
t
h
i
r
d
 
o
f
 
t
h
e
 
m
o
l
e
c
u
l
e
s
 
i
n
v
o
l
v
e
d
;
 
t
h
a
t
 
i
s
,

2
 
x
 
1
0
2
6
o
r
 
2
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
,
0
0
0
 
m
o
l
e
c
u
l
e
s
,
 
m
o
v
i
n
g
 
5
0
0
 
m
e
t
e
r
s
/
s
e
c

a
l
o
n
g
 
t
h
e
 
4
-
m
e
t
e
r
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
b
o
x
,
 
h
i
t
t
i
n
g
 
t
h
e
 
e
n
d
,
 
r
e
b
o
u
n
d
i
n
g
 
5
0
0
 
m
e
t
e
r
s
/
a
e
c
,

h
i
t
t
i
n
g
 
t
h
e
 
o
t
h
e
r
 
e
n
d
,
 
r
e
b
o
u
n
d
i
n
g
,
 
a
n
d
 
s
o
 
o
n
.

U
s
i
n
g
 
r
e
s
u
l
t
 
o
f
 
I
V
 
a
b
o
v
e
,
 
w
e
 
p
r
e
d
i
c
t
 
t
h
a
t
:

a
v
e
r
a
g
e
 
p
r
e
s
s
u
r
e
 
o
n
 
e
n
d
 
o
f
 
b
o
x
 
w
i
l
l
 
b
e

(
T
h
e
 
d
a
t
a
 
a
r
e
 
r
o
u
g
h
l
y
 
r
i
g
h
t
 
f
o
r
 
o
r
d
i
n
a
r
y
 
a
i
r
 
i
n
 
a
 
r
o
o
m
.

W
h
a
t
 
v
a
l
u
e

f
o
r
 
a
t
m
o
s
p
h
e
r
i
c
 
p
r
e
s
s
u
r
e
,
 
i
n
 
t
h
e
 
s
a
n
e
 
u
n
i
t
s
,
 
i
s
 
g
i
v
e
n
 
b
y
 
d
i
r
e
c
t

m
e
a
s
u
r
e
m
e
n
t
 
w
i
t
h
 
a
 
b
a
r
o
m
e
t
e
r
?
)

u
n
i
t
e

H
o
w
 
d
o
e
s
 
y
o
u
r
 
r
e
s
u
l
t
 
c
a
l
c
u
l
a
t
e
d
 
a
b
o
v
e
 
f
o
r
 
t
h
e
 
m
o
l
e
c
u
l
e
s
 
c
o
m
p
a
r
e
 
w
i
t
h

a
t
m
o
s
p
h
e
r
i
c
 
p
r
e
s
s
u
r
e
 
m
e
a
s
u
r
e
d
 
i
n
 
l
a
b
?

u
n
i
t
s

(
1
1
)
 
N
o
w
 
s
u
p
p
o
s
e
 
t
h
e
 
b
o
x
 
i
s
 
g
e
n
t
l
y
 
s
q
u
a
s
h
e
d
 
e
n
d
-
w
a
y
s
,
 
s
o
 
t
h
a
t
 
i
t
s
 
l
e
n
g
t
h
 
i
s

r
e
d
u
c
e
d
 
t
o
 
2
 
m
e
t
e
r
s
 
(
i
.
e
.
,
 
h
a
l
f
 
t
h
e
 
o
r
i
g
i
n
a
l
 
l
e
n
g
t
h
)
 
w
i
t
h
o
u
t
 
c
h
a
n
g
i
n
g
 
t
h
e

n
u
m
b
e
r
 
o
f
 
m
o
l
e
c
u
l
e
s
 
o
r
 
t
h
e
i
r
 
s
p
e
e
d
s
,
 
o
r
 
t
h
e
 
s
i
r
e
 
o
f
 
t
h
e
 
e
n
d
-
w
a
l
l
.

A
v
e
r
a
g
e
 
p
r
e
s
s
u
r
e
 
o
n
 
e
n
d
 
o
f
 
b
o
x
 
w
i
l
l
 
b
e
 
.

.

u
n
i
t
s

N
O
T
E
:
 
T
h
e
r
e
 
i
s
 
v
e
r
y
 
l
i
t
t
l
e
 
c
h
a
n
g
e
 
i
n
 
t
h
e
 
a
r
i
t
h
m
e
t
i
c
 
f
r
o
m

(
1
)
 
t
o
 
(
1
1
)
.

C
h
e
c
k
 
t
h
r
o
u
g
h
 
t
o
 
g
e
t
 
t
h
e
 
n
e
w
 
a
n
s
w
e
r
.

(
1
1
1
)
 
C
o
m
m
e
n
t
 
o
n
 
t
h
e
 
a
n
s
w
e
r
 
t
o
 
V
(
I
1
)
.

V
I
.
 
O
P
T
I
O
N
A
L
.
 
O
n
 
a
 
s
e
p
a
r
a
t
e
 
s
h
e
e
t
,
 
r
e
p
e
a
t
 
t
h
e
 
c
a
l
c
u
l
a
t
i
o
n
 
o
f
 
a
v
e
r
a
g
e

p
r
e
s
s
u
r
e
,
 
V
(
1
)
,
 
w
i
t
h
 
a
l
g
e
b
r
a
.

T
a
k
e
 
a
 
b
o
x
 
o
f
 
l
e
n
g
t
h

a
 
m
e
t
e
r
s
,
 
w
i
d
t
h

b
 
m
e
t
e
r
s
,
 
a
n
d
 
h
e
i
g
h
t

c
w
a
t
e
r
s
,
 
c
o
n
t
a
i
n
i
n
g
 
a
 
T
O
T
A
L
 
o
f
 
N
 
m
o
l
e
c
u
l
e
s

m
o
v
i
n
g
 
w
i
t
h
 
a
v
e
r
a
g
e
 
s
p
e
e
d
 
v
 
m
e
t
e
r
s
 
s
e
c
.

(
1
)
 
C
a
l
c
u
l
a
t
e
 
p
r
e
s
s
u
r
e

p
.

(
1
1
)
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
p
r
o
d
u
c
t

(
P
R
E
S
S
U
R
E
)
 
x
 
(
V
O
L
U
M
E
)
,
 
b
y
 
m
u
l
t
i
p
l
y
i
n
g

2
b
y
 
a
b
c
.

N
O
T
E
:

C
h
e
m
i
s
t
s
 
o
f
t
e
n
 
d
e
a
l
 
w
i
t
h
 
a
 
"
m
o
l
e
"
 
o
r
 
"
g
r
a
m
-
m
o
l
e
c
u
l
e
"
 
o
f
 
g
a
s
.

A
 
m
o
l
e
 
o
f
 
a
n
y

g
a
s
 
o
c
c
u
p
i
e
s
 
2
2
.
4
 
l
i
t
e
r
s
 
a
t
 
a
t
m
o
s
p
h
e
r
i
c
 
p
r
e
s
s
u
r
e
 
a
n
d
 
t
h
e
 
t
e
m
p
e
r
a
t
u
r
e
 
o
f
 
m
e
l
t
i
n
g

i
c
e
.

A
t
 
r
o
o
m
 
t
e
m
p
e
r
a
t
u
r
e
 
(
a
n
d
 
o
n
e
 
a
t
m
o
s
p
h
e
r
e
)
 
a
 
m
o
l
e
 
o
c
c
u
p
i
e
s
 
a
b
o
u
t
 
2
4
 
l
i
t
e
r
s
.

H
e
r
e
 
w
e
 
h
a
v
e
 
c
h
o
s
e
n
 
1
0
0
0
 
m
o
l
e
s
,
 
a
 
"
k
i
l
o
-
m
o
l
e
"
 
o
r
 
"
k
i
l
o
g
r
a
m
-
m
o
l
e
c
u
l
e
,
"
 
w
h
i
c
h
 
w
o
u
l
d

o
c
c
u
p
y
 
a
b
o
u
t
 
2
4
,
0
0
0
 
l
i
t
e
r
s
 
o
r
 
2
4
 
c
u
.
 
m
e
t
e
r
s
 
a
t
 
r
o
o
m
 
t
e
m
p
e
r
a
t
u
r
e
 
(
a
b
o
u
t
 
2
0
 
°
C
.
)

B
O
X
 
C
O
N
T
A
I
N
I
N
G
 
6
 
x
 
1
0
2
6
 
M
O
L
E
C
U
L
E
S
 
I
N
 
R
A
N
D
O
M
 
M
O
T
I
O
N

2,
11

0 
"E

sa
6Y

2
X
 
1
0
 
A
l
p

,

r
-

2
X
 
/
0

h
4
4
1 g
o
s
.

( 
6 

)

I
n
s
t
e
a
d
 
o
f
 
r
a
n
d
o
m
 
d
i
r
e
c
t
i
o
n
s

o
f
 
m
o
t
i
o
n
,
 
a
s
 
i
n
 
(
a
)
,
 
p
r
e
t
e
n
d

t
h
e
r
e
 
a
r
e
 
t
h
r
e
e
 
r
e
g
i
m
e
n
t
e
d

g
r
o
u
p
s
 
u
s
 
i
n
 
(
b
)
,
 
e
a
c
h
 
g
r
o
u
p

o
f
 
2
 
x
 
1
0
2
6

h
a
v
i
n
g
 
f
u
l
l

v
e
l
o
c
i
t
y
 
b
u
t
 
m
o
v
i
n
g
 
p
a
r
a
l
l
e
l

t
o
 
o
n
e
 
e
d
g
e
 
o
f
 
t
h
e
 
b
o
x
.

E

T
h
e
n
 
a
s
s
u
m
e
 
t
h
a
t
 
t
h
e

p
r
e
s
s
u
r
e
 
o
n
 
e
n
d
 
f
a
c
e
 
i
s

d
u
e
 
t
o
 
i
m
p
a
c
t
s
 
b
y
 
o
n
e

g
r
o
u
p
,
 
2
 
x
 
1
0
2
6
 
-

m
o
l
e
c
u
l
e
s
,

m
o
v
i
n
g
 
t
o
-
a
n
d
-
f
r
o
 
p
a
r
a
l
l
e
l

t
o
 
t
h
e
 
l
e
n
g
t
h
 
o
f
 
t
h
e
 
b
o
x
,
 
a
s

I
n
 
(
c
)
.

2

F
I
G
.
2
5
-
5
.



S
P
E
C
I
A
L
 
P
R
O
B
L
E
M
S
 
O
N
 
1
4
3
L
E
C
U
I
A
R
 
T
H
E
O
R
Y

N
A
M
E

M
U
M
 
2
.

K
I
N
E
T
I
C
 
T
H
E
O
R
Y
 
W
I
T
H
 
A
L
G
E
B
R
A

s
a
t
y
r

6

(
T
h
i
s
 
t
r
e
a
t
s
 
m
a
n
y
 
g
a
s
 
m
o
l
e
c
u
l
e
s
 
i
n
 
a
 
b
o
x
 
w
i
t
h
 
a
l
g
e
b
r
a
.

I
t
 
s
h
o
.
l
d

b
e
 
t
r
i
e
d
 
a
f
t
e
r
 
P
r
o
b
l
e
m
 
1
 
h
a
s
 
b
e
e
n
 
a
n
s
w
e
r
e
d
 
a
n
d
 
c
o
r
r
e
c
t
e
d
.
)

S
u
p
p
o
s
e
 
t
h
a
t
 
t
h
e
 
o
o
x
 
c
o
n
t
a
i
n
s
 
N
 
m
o
l
e
c
u
l
e
s
 
(
7

i
n
 
t
h
e
 
w
h
o
l
e
 
b
o
x
,
 
n
o
t
 
X
 
m
o
l
e
c
u
l
e
s

i
n
 
e
a
c
h
 
c
u
b
i
c
 
m
e
t
e
r
 
a
s
 
i
n
 
s
o
m
e
 
t
e
x
t
s
)
.

S
u
p
p
o
s
e
 
t
h
a
t
 
t
h
e
 
b
o
x
 
h
a
s
 
l
e
n
g
t
h

m
e
t
e
r
s

a
n
d
 
e
n
d
s
 
o
f
 
d
i
m
e
n
s
i
o
n
s

b
 
m
e
t
e
r
s
 
b
y

c
m
e
t
e
r
s
.

I
n
 
t
h
e
 
c
o
u
r
s
e
 
o
f
 
t
h
e
i
r
 
r
a
n
d
o
m
 
m
o
t
i
o
n
 
w
i
t
h
 
m
a
n
y
 
c
o
l
l
i
s
i
o
n
s
 
t
h
e
 
m
o
l
e
c
u
l
e
s
 
w
i
l
l

e
x
c
h
a
n
g
e
 
m
o
m
e
n
t
u
m
 
a
n
d
 
w
i
l
l
 
n
o
t
 
a
l
l
 
k
e
e
p
 
t
h
e
 
s
a
m
e
 
v
e
l
o
c
i
t
y
.

H
o
w
e
v
e
r
,
 
i
f
 
t
h
e

t
e
m
p
e
r
a
t
u
r
e
 
i
s
 
k
e
p
t
 
c
o
n
s
t
a
n
t
,
 
w
e
 
b
e
l
i
e
v
e
 
t
h
e
!
:
 
v
e
l
o
c
i
t
i
e
s
 
w
i
l
l
 
r
a
n
g
e
 
a
r
o
u
n
d
 
a
 
f
i
x
e
d

a
v
e
r
a
g
e
 
v
e
l
o
c
i
t
y
,
 
w
h
i
c
h
 
w
e
 
c
e
l
l
 
v

m
e
t
e
r
s
/
s
e
c
.

T
o
 
c
a
l
c
u
l
a
t
e
 
t
h
e
 
p
r
e
s
s
u
r
e
 
o
n
 
o
n
e
 
e
n
d

o
f
 
t
h
e
 
b
o
x
 
w
e
 
d
e
a
l
 
o
n
l
y
 
w
i
t
h
 
m
o
l
e
c
u
l
a
r
 
i
m
p
a
c
t
s
 
o
u
 
t
h
a
t
 
e
n
d
.

S
o
 
t
o
 
s
i
m
p
l
i
f
y
 
t
h
e

p
r
o
b
l
e
m
 
w
e
 
p
r
e
t
e
n
d
 
t
h
a
t
 
t
h
e

N
 
m
o
l
e
c
u
l
e
s
 
a
r
e
 
r
e
g
i
m
e
n
t
e
d
 
i
n
 
t
h
r
e
e
 
e
q
u
a
l
 
g
r
o
u
p
s
,
 
o
n
e

l
o
t
 
m
o
v
i
n
g
 
u
p
-
a
n
d
-
d
o
w
n
,
 
c
n
e
 
l
o
t
 
t
o
-
a
n
d
-
f
r
o
 
a
c
r
o
s
s
 
t
h
e
 
w
i
d
t
h
,
 
a
n
d
 
o
n
e
 
l
o
t
 
m
o
v
i
n
g

f
o
r
w
a
r
d
s
-
a
n
d
-
b
a
c
k
v
a
r
d
s
 
a
l
o
n
g
 
t
h
e
 
l
e
n
g
t
h
.

F
o
r
 
t
h
e
 
p
r
e
s
s
u
r
e
 
o
n
 
o
n
e
 
e
n
d
 
w
e
 
t
h
e
n

c
o
n
s
i
d
e
r
 
t
h
e
 
l
a
s
t
 
l
o
t
 
o
n
l
y
.

S
y
m
m
e
t
r
y
-
c
o
n
s
i
d
e
r
a
t
i
o
n
s
 
s
u
g
g
e
s
t
 
w
e
 
s
h
o
u
l
d
 
i
m
a
g
i
n
e
 
t
h
e

m
o
l
e
c
u
l
e
s
 
e
q
u
a
l
l
y
 
d
i
v
i
d
e
d
 
a
m
o
n
g
 
t
h
e
 
t
h
r
e
e
 
g
r
o
u
p
s
.

M
a
k
i
n
g
 
t
h
e
s
e
 
a
s
s
u
m
p
t
i
o
n
s
,
 
a
n
s
w
e
r

t
h
e
 
q
u
e
s
t
i
o
n
s
 
b
e
l
o
w
,
 
u
s
i
n
g
 
m
 
k
i
l
o
g
r
a
m
s
 
f
o
r
 
t
h
e
 
m
a
s
s
 
o
f
 
o
n
e
 
m
o
l
e
c
u
l
e
.

(
1
)
 
W
h
e
n
 
o
n
e
 
m
o
l
e
c
u
l
e
 
h
i
t
s
 
t
h
e
 
f
r
o
n
t
 
e
n
d
 
h
e
a
d
-
o
n

a
n
d
 
r
e
b
o
u
n
d
s
,
 
i
t
s
 
c
h
a
n
g
e
 
o
f
 
m
o
m
e
n
t
u
m
 
i
s

(
i
i
)
 
B
e
t
w
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Difficulties of the Simple Theory

The relation you worked out in Problem 2 seems to
predict a steady pressure and Boyle's-Law behavior,
from molecular chaos. How can a rain of molecules
hitting a wall make a steady pressure? Only if the col-
lisions come in such rapid succession that their bumps
seem to smooth out into a constant force. For that the

FORCE

ON END

OF BOX

F

inclwidical4nyacts

of inektuks

; 4

Ana sfuukcit's
)4 total if F. ar

SMEARED OUT

TO AVERAGE FORCE

TIME

( same totof

EffrderilleXWATABMIPASSISSYNNffilr

TIME

Fie. 25-8. SMOOTHING Our ImpAc-rs

molecules of a gas must be exceedingly numerous, and
very small. If they are small any solid pressure-gauge
or container wall will be enormously massive compared
with a single gas molecule, so that, as impacts bring it
momentum, it will smooth them out to the steady pres-
sure we observe. (What would you expect if the con-
tainer wall were as light as a few molecules?)

The problem pretended that molecules travel
straight from end to end and never collide with each
other en route. They certainly do collidethough we
cannot say how often without further information. How
will that affect the prediction?

* PROBLEM 3. COLLISIONS IN SIMPLE THEORY

(a) Show that it does not matter, in the simple derivation
of Problems 1 and 2, whether molecules collide or not.
(Consider two molecules moving to and fro from end to end,
just missing each other as they cross. Then suppose they
collide head-on and rebound. Why will their contribution to
the pressure be unchonged? Explain with a diagram.)

(b) What special assumption obout molecules is required
far (a)?

(c) Suppose the molecules swelled up and become very
bulky (but kept the same speed, mass, etc.), would the effect
of mutual collisions be an increose of pressure (for the same
volume etc.) or a decrease ar whot? (Note: "bulky" means
large in size, not necessarily large in moss.)

(d) Give a dear reason for your answer to (c).

Molecular Chaos

Molecules hitting each other, and the walls, at ran-
domsome head on, some obliquely, some glancing
cannot all keep the same speed 9. One will gain in a
collision, and another lose, so that the gas is a chaos of
molecules with random motions whose speeds (chang-
icy.' at every collision) cover a wide range. Yet they

40

must preserve some constancy, because a gas exerts a
steady pressure.

In the prediction p V = (1/2)1N m v21, we do not
have all N molecules moving with the same speed, each
contributing miT2 inside the brackets. Instead we have
molecule #1 with its speed 01, molecule #2 with v2,
molecule N with speed vN. Then

p V = (%) [m v,2 m v22+ + myN2]
= (%) (v,2 + v22 + + v/42) I
= (%) [m (N AVERAGE V2) See note 3.

The v2 in our prediction must therefore be an average
v2, so that we write a bar over it to show it is an average
value. Our theoretical prediction now runs:

PRESSURE VOLUME = % N m v2.

We know that if we keep a gas in a closed bottle its
pressure does not lump up and down as ti goes on;
its pressure and volume stay constant. Therefore in
spite of all the changes in collisions, the molecular v2
stays constant. Already our theory helps us to picture
some orderconstant v2among molecular chaos.

A More Elegant Derivation

To most scientists the regimentation that leads to the
factor is too artificial a trick. Here is a more elegant
method that treats the molecules' random velocities
honestly with simple statistics. Suppose molecule #1 is
moving in a slanting direction in the box, with velocity
v1. (See Fig. 25-7.) Resolve this vector v, into three

/les

Flo. 25-7. ALTERNATIVE TREATMENT of
GAS MOLECULE MOTION

( More professional, less artificial.)
In this we keep the random velocities, avoiding

regimentation, but split each velocity v into three
components, ,v, parallel to the sides of the box.

Then we deal with .1? in calculating the pressure and
arrive at the same result. Sketches show three molecules

with velocities split into components.

components along directions x, y, z, parallel to the edges
of the box. Then v, is the resultant of iv, along x and
7v, along y and 2v, along z; and since these are mutually
perpendicular, we have, by the three-dimensional form

Because AVERAGE e = (sum of all the e values)/(num-
ber of v' values) = (vi' . vn')/(N)

(vis th1 . vx') = N (AVERAGE vs) or N

This ;7 is called the "mean square velocity." To obtain it, take
the speed of each molecule, at an instant, square it, add all
the squares, and divide by the number of molecules. Or,
choose one molecule and average its v' over a long time
say a billion collisions.
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Fic 25-8. VELOCITY COMPONENTS
Prriucoms: = Oh' + + eV?

of Pythagoras' theorem:
And for molecule #2
And for molecule #3

and so on
And for molecule #N

Add all these equations:

) X

v12 = 2V12 7V22 2V12
V22 = 3v32 + 3022 3022
V32 = 2v324 3032 4. ,v32

vN2 = svN2 vyN2 .vN2

(v1' 4. v22 + v32 +...+ vN2 )

= (zv12 + 2v32 + .032 2v312)

(3012 + 3022 + 7032 4. 3vN2 )

(3012 4. 2v32 4. .v32 + 3,N2)

Divide by the number of molecules, N, to get average
values: v.t = .v2 vv2

Appealing to symmetry, and ignoring the small bias
given by gravity, we claim that the three averages on
the right are equalthe random motions of a statisti-
cally large number of molecules should have the same
distribution of velocities in any direction.

.v2 = vv2 = .v2

v2 = 3.v2

To predict the pressure on the end of the box we pro-
ceed as in Problem 2, but we use v for a molecule's
velocity along the length of the box. (That is the velocity
we need, because iv and iv do not help the motion
from end to end and are not involved in the change of
momentum at each end.) Then the contribution of
molecule #1 to PRESSURE VOLUME is m .012 and the
contribution of all N molecules is

m (012 + 4.... pie) or m N . sv2;

and by the argument above this is m N (v2/3)
PRESSURE VOLUME = %) N m v2

(If you adopt this derivation, you should carry through
the algebra of number of hits in t secs, etc., as in
Problem 2.)

Molecular Theory's Predictions

Thinking about molecular collisions and using
Newton's Laws gave the (1/4) N m v2 prediction:

PRESsURE vOLumE = (%) N m v2

This looks like a prediction of Boyle's Law. The
fraction (%) is a constant number; N, the number of
molecules, is constant, unless they leak out or split

The Great Molecular Theory of Gases

up; m, the mass of a molecule, is constant. Then if
the average speed remains unchanged, (1/4) N m v2
remains constant and therefore p V should remain
constant, as Boyle found it does. But does the speed
of molecules remain fixed? At this stage, you have
no guarantee. For the moment, anticipate later dis-
cussion and assume that molecular motion is con-
nected with the heat-content of a gas, and that at
constant temperature gas molecules keep a constant
average speed, the same speed however much the
gas is compressed or rarefied' Later you will receive
clear reasons for believing this. If you accept it now,
you have predicted that:'

The product p V is constant for a gas at
constant temperature.

You can see the prediction in simplest form by
con idering changes of DENsrry instead of voLumE:
just put twice as many molecules in the same box,
and the pressure will be doubled.

A marvelous prediction of Boyle's Law? Hardly
marvelous: we had to pour in many assumptions
with a careful eye on the desired result, we could
scarcely help choosing wisely. A theory that gathers
assumptions and predicts only one already-known
lawand that under a further assumption regard-
ing temperaturewould not be worth keeping. But
our new theory is just beginning: it is also helpful
in "explaining" evaporation, diffusion, gas friction;
it predicts effects of sudden compression; it makes
vacuum-pumps easier to design and understand.
And it leads to measurements that give validity to
its own assumptions. Before discussing the develop-
ment, we ask a basic question, "Are there really any
such things as molecules?"

Are there really molecules?

"That's the worst of circumstantial evidence.
The prosecuting attorney has at his command
all the facilities of organized investigation. He
uncovers facts. He selects only those which, in
his opinion, are significant. Once he's come to
the conclusion the defendant is guilty, the only
facts he considers significant are those which
point to the guilt of the defendant. That's why
circumstantial evidence is such a liar. Facts
themselves are meaningless. It's only the inter-
pretation we give those facts which counts."

"Perry Mason"Erle Stanley Gardner'

4 Actually, compressing a gas warms it, but we believe that
when it cools back to its original temperature its molecules,
though still crowded close, return to the same average speed
as before compression.

The Case of the Perjured Parrot, Copyright 1939, by
Ede Stanley Gardner.

41



A century ago, molecules seemed useful: a help-
ful concept that made the regularities of chemical
combinations easy to understand and provided a
good start for a simple theory of gases. But did they
really exist? There was only circumstantial evidence
that made the idea plausible. Many scientists were
skeptical, and at least one great chemist maintained
his right to disbelieve in molecules and atoms even
until the beginning of this century. Yet one piece of
experimental evidence appeared quite early, about
1827: the Brownian motion.

The Brownian Motion

The Scottish botanist Robert Brown (1773-1858)
made an amazing discovery: he practically saw
molecular motion. Looking through his microscope
at small specks of solid suspended in water, he saw
them dancing with an incessant jigging motion. The
microscopic dance made the specks look alive, but
it never stopped day after day. Heating made the
dance more furious, but on cooling it returned to its
original scale. We now know that any solid specks
in any fluid will show such a dance, the smaller the
speck the faster the dance, a random motion with
no rhyme or reason. Brown was in fact watching
the effects of water molecules jostling the solid
specks. The specks were being pushed around like
an elephant in the midst of a football game.

Watch this "Brownian motion" for yourself. 1...00k
at small specks of soot in water ("India ink") with
a high-magnification microscope. More easily, look
at smoke in air with a low-power microscope. Fill
a small black box with smoke from a cigarette or a
dying match, and illuminate it with strong white
light from the side. The smoke scatters bluish-white
light in all directions, some of it upward into the
microscope. The microscope shows the smoke as a
crowd of tiny specks of white ash which dance
about with an entirely irregular motion' (See Fro.
30-3 for an example )

Watching the ash specks, you can see why Brown
at first thought he saw living things moving, butyou
can well imagine the motion to be due to chance
bomba.dment by air molecules. Nowadays we not
only think it may be that; we are sure it is, because
we can calculate the effects of such bombardment
and check them with observation. If air molecules
were infinitely small and infinitely numerous, they

6 There may also be general drifting motionsconvection
currentsbut these are easily distinguished. An ash speck
in focus shows as a small sharp wisp of white, often oblong;
but when it drifts or dances away out of focus the micro-
scope shows it as a fuzzy round blob, just as camera pictures
show distant street lights out of focus.
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would bombard a big speck symmetrically from all
sides and there would be no Brownian motion to
see. At the other extreme, if there were only a few
very big molecules of surrounding air, the ash
speck would make great violent jumps when it did
get hit. From what we see, we infer something be-
tween these extremes; there must be many mole-
cules in the box, hitting the ash speck from all sides,
many times a second. In a short time, many hun-
dreds of molecules hit the ash speck from every
direction; and occasionally a few hundreds more
hit one side of it than the other and drive it noticea-
bly in one direction. A big jump is rare, but several
tiny random motions in the same general direction
may pile up into a visible shift.° Detailed watching
and calculation from later knowledge tell us that
what we see under the microscope are those gross
resultant shifts; but, though the individual move-
ments are too small to see, we can still estimate their
speed by cataloguing the gross staggers and ana-
lysing them statistically.

You can see for yourself that smaller specks dance
faster. Now carry out an imaginary extrapolation to
smaller and smaller specks. Then what motion
would you expect to see with specks as small as
molecules if you could see them? But can we see
molecules?

Seeing molecules?

Could we actually see a molecule? Thatwould indeed
be convincingwe feel sure that what we see is real,
despite many an optical illusion. All 'through the last
century's questioning of molecules, scientists agreed
that seeing one is hopelessnot just unlikely but im-
possible, for a sound physical reason. Seeing uses light,
which consists of waves of very short wavelength, only
a few thousand Angstrom Units' from crest to crest. We
see by using these waves to form an image:

with the naked eye we can see the shape of a pin's
head, a millimeter across, or 10,000,000 AU

with a magnifying glass we examine a fine hair,
1,000,000 AU thick

with a low-power microscope we see a speck of smoke
ash, 100,000 AU

with a high-power microscope, we see bacteria, from
10,000 down to 1000 AU

but there the sequence stops. It must stop because the
wavelength of visible light sets a limit there. Waves
can make clear patterns of obstacles that are larger

4 Imagine an observer with poor sight tracing the motion
of an active guest at a crowded party. He might fail to see
the guest's detailed motion of small steps here and there,
and yet after a while he would notice that the guest had
wandered a considerable distance.

I I Angstrom Unit, I AU, is 104° meter.



than their wavelength, or even about their wavelength
in size. For example, ocean waves sweeping past an
island show a clear "shadow" of calm beyond. But waves
treat smaller obstacles quite differently. Ocean waves
meeting a small wooden post show no calm behind.
They just lollop around the post and join up beyond it
as if there were no post there. A blind man paddling
along a stormy seashore could infer the presence of an
island nearby, but would never know about a small post
just offshore from him .9 Light waves range in wave-
length from 7000 AU for red to 4000 for violet. An
excursion into the short-wave ultraviolet, with photo-
graphic film instead of an eye, is brought to a stop by
absorption before wavelength 1000 AU: lenses, speci-
men, even the air itself, are "black" for extreme ultra-
violet light. X-rays, with shorter wavelength still, can
pass through matter and show grey shadows, but they
practically cannot be focused by lenses. So, although
X-rays have the much shorter wavelength that could
pry into much finer structures, they give us only un-
magnified shadow pictures. Therefore the limit imposed
by light's wavelength seemed impassable. Bacteria down
to 1000 AU could be seen, but virus particles, ten times
smaller, must remain invisible. And molecules, ten times
smaller still, must be far beyond hope. Yet viruses, re-
sponsible for many digeases, are of intense medical
interestwe now think they may mark the borderline
between living organisms and plain chemical molecules.
And many basic questions of chemistry might be an-
swered by seeing molecules.

The invisibility of molecules was unwelcome, but
seemed inescapable. Then, early in this century, X-rays
offered indirect information. The well-ordered atoms
and molecules of crystals can scatter X-rays into regular
patterns, just as woven cloth can "diffract" light into
regular patternslook at a distant lamp at night
through a fine handkerchief or an umbrella. X-ray pat-
terns revealed both the arrangement of atoms in crystals
and the spacing of their layers. Such measurements
confirmed the oil-film estimates of molecular size. More
recently, these X-ray diffraction-splash pictures have
sketched the general shape of some big molecules
really only details of crystal structure, but still a good
hint of molecular shape. Then when physicists still
cried "no hope" the electron microscope was invented.
Streams of electrons, instead of light-waves, pass thiough
the tiny object under examination, and are focused by
electric or magnetic fields to form a greatly magnified
image on a photographic film. Electrons are incom-
parably smaller agents than light-waves,9 so small that

Tiny obstacles do produce a small scattered ripple, but
this tells nothing about their shape. Bluish light scattered
by very fine smoke simply indicate there are very tiny
specks there, but does not say whetaer they are round or
sharp-pointed or oblong. The still more bluish light of the
sky is sunlight scattered by air molecules.

9 Electrons speeding through the electron microscope be-
have as if they too have a wavelength, but far shorter than
the wavelength of light. So they offer new possibilities of
"vision," whether you regard them as minute bullets smaller
than atoms, or as ultra-short wave patterns. A technology of
"electron optics" has developed, with lenses" for electron
microscopes and for television tubes (which are electron
projection-lanterns).
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even "molecules" can be delineated. Then we can "see"
virus particles and even big molecules in what seem to
be reliable photographs with huge magnifications. These
new glimpses of molecular structure agree well with
the speculative pictures drawn by chemists arguing
very cleverly from chemical behavior.

Recently, still sharper methods have been de eloped.
At the end of this book you will see a picture of the
individual atoms of metal in a needle point. Why not
show that now? Because, like so much in atomic physics,
the method needs a sophisticated knowledge of assump-
tions as well as techniques before you can decide in
what sense the photograph tells the truth. Going still
deeper, very-high-energy electrons are now being used
to probe the structure of atomic nuclei, yielding indirect
shadow pictures of them.

In the last 100 years, molecules have graduated from
being tiny uncounted agents in a speculative theory to
being so real that we even expect to "see" their shape.
Most of the things we know about themspeed, num-
ber, mass, sizewere obtained a century ago with the
help of kinetic theory. The theory promoted the meas-
urements, then the measurements gave validity to the
theory. We shall now leave dreams of seeing molecules,
and study what we can measure by simple experiments.

Measuring the Speed of Molecules

Returning to our prediction that:

PRESSURE VOLUME = (1/4) N m v2

We can use this if we trust it, to estimate the actual
speed of the molecules. N is the number of molecules
and m is the mass of one molecule so Nm is the total
mass M of all the molecules in the box of gas. Then
we can rewrite our prediction:

PRESSURE VOLUME = (%) M t33

where M is the total mass of gas. We can weigh a
big sample of gas with measured volume at known
pressure and substitute our measurements in the
relation above to find the value of 7)z and thus the
value of the average speed.

Fig. 25-9 shows the necessary measurements.
Using the ordinary air of the room, we measure its
pressure by a mercury barometer. (Barometer
height and the measured density of mercury and
the measured value of the Earth's gravitational field
strength, 9.8 newtons per kilogram, will give the
pressure in absolute units, newtons per square
meter.)" We weigh the air which fills a flask. For
this, we weigh the flask first full of air at atmospheric
pressure and second after a vacuum pump has taken
out nearly all the air. Then we open the flask under
water and let water enter to replace the air pumped

10 Since we made our kinetic theory prediction with the
help of Newton's Law II, the predicted force must be in
absolute units, newtons; and the predicted pressure must be
in newtons per square meter.

43



Preeser of arrnoepliare

(barometer height) (derwily of mercury) Meld etreggeb. g)

P eda touters) (c.

lcd g **eans/equate Mat.

WAWA'

Mass of air
pumped out.

Volume of air
pumped out
(replaced by
water), V.

DENSITY

OF MR
H.

I

I
P 4 PIP ; I Tr 4 ',sway:S

h.

AVERAGE (VELOCITY:) SligurrSUIrtt

moo. wortreleawewoowomoe,..4..........-11.

FIG. 25-9.
MEASURING MOLECULE VELOCITIES INDIRECTLY,

BUT SIMPLY, ASSUMINC KINETIC THEORY.

KINETIC THEORY PREDICTS THAT.

out. Measuring the volume of water that enters the
flask tells us the volume of air which has a known
mass. Inserting these measurements in the predicted
relation we calculate v2 and thence its square root
V( v2) which we may call the "average speed," v
(or more strictly the "root mean square," or 11:M.S.
speed). You should see these measurements made
and caldulate the velocity, as in the following
problem.

* PROBLEM 4. SPEED OF OXYGEN MOLECULES

Experiment shows that 32 kg of oxygen occupy 24 cubic
meters at atmospheric pressure, at room temperature.
(a) Calculate the density, MASS/VOLUME, of oxygen.
(b) Using the relation given by kinetic theory, calculate the

mean square velocity,V", of the molecules.
(c) Take the square root and find an "average" velocity, in

meters/sec.
(d) Also express this very roughly in miles/hour.

(Take 1 kilometer to be 5/8 mile)

Air molecules moving mile a second! Here is
theory being fruitful and validating its own assump-
tion, as theory should. We assumed that gases con-
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sist of molecules that are moving, probably moving
fast; and our theory now tells us how fast, with
the help of simple gross measurements. Yet theory
cannot prove its own prediction is truethe result
can only be true to the assumptions that went in.
So we need experimental tests. If the theory passes
one or two tests, we may trust its further predictions.

Speed of Molecules: experimental evidence

We have rough hints from the speed of sound and
from the Brownian motion.

PROBLEM 5. SPEED OF SOUND

We believe that sound is carried by waves of compression
and rarefaction, with the changes of crowding and motion
handed on from molecule to molecule at collisions. If air does
consist of moving molecules far apart, what can you say
about molecular speed, given that the measured speed of
sound in air is 340 meters/sec 1100 ft/sec)?

PROBLEM 6. BROWNIAN MOTION

Looking at smoke under a microscope you will see large
specks of ash jigging quite fast; small specks jig faster still.
(a) There may be specks too small to see. What motion

would you expect them to hove?
(b) Regarding a single air molecule as an even smaller "ash

speck," what can you state about its motion?

The two problems above merely suggest general
guesses. Here is a demonstration that shows that
gas molecules move very fast. Liquid bromine is
released at the bottom of a tall glass tube. The

(a) Bromine *ins in ait; (6) Bromine rskased ao vacuum,

TO vaauutt.
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Ftc. 25-10. MOTION OF BROMINE MOLECULES:

DEMONSTRATION OF MOLECULAR SPEED.

The bromine is inserted as liquid bromine in a small glass
capsule with a long nose that can be broken easily.



liquid evaporates immediately to a brown vapor
or "gas," which slowly spreads throughout the tube.
The experiment is repeated in a tube from which
all air has been pumped out. Now the brown gas
moves very fast when released. (In air, its molecules
still move fast, but their net progress is slow be-
cause of many collisions with air molecules.)

Direct Measurement

The real test must be a direct measurement.
Molecular speeds have been measured by several
experimenters. Here is a typical experiment, done
by Zartman. He let a stream of molecules shoot
through a slit in the side of a cylindrical drum that
could be spun rapidly. The molecules were of bis-
muth metal, boiled off molten liquid in a tiny oven
in a vacuum. A series of barriers with slits selected
a narrow stream to hit the drum. Then each time
the slit in the drum came around, it admitted a small
flock of moving molecules. With the drum at rest,
the molecules travelled across to the opposite wall
inside the drum and made a mark on a receiving
film opposite the slit. With the drum spinning, the
film was carried around an appreciable distance
while the molecules were travelling across to it, and
the mark on it was shifted to a new position. The
molecules' velocity could be calculated from the
shift of the mark and the drum's diameter and spin-
speed. When the recording film was taken out of
the drum it showed a sharp central mark of de-
posited metal but the mark made while it spun was
smeared out into a blur showing that the molecular
velocities had not all been the same but were spread
over a considerable range. Gas molecules have ran-
dom motion with frequent collisions and we must
expect to find a great variety of velocities at any
instant. It is the average velocity, or rather the root-
mean-square average, V( v2), that is involved in
kinetic theory prediction. The probable distribution
of velocities, clustering round that average, can be
predicted by extending simple kinetic theory with
the help of the mathematical statistics of chance. In
Zartman's experiment, we expect the beam of hot
vapor molecules to have the same chance distribu-
tion of velocities with its peak at an average value
characteristic of the temperature. Measurements of
the actual darkening of the recording film showed
just such a distribution and gave an average that

uo, Grel tIc...01`,-. I

ZARTMAN'S EXPERIMENT
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FIG. 25-11. MEASURING MOLECULE VELOCITIES DIRECTLY
(a) Sketch of Zartman's experiment.

(b) These sketches show various stages
of the rotation of the drum.

(c) Specimen film (unrolled).

agreed well with the value predicted by simple
theory ( see sketch of graph in Fig. 25-12)."

Molecular Speeds in Other Gases. Diffusion

Weighing a bottle of hydrogen or helium at at-
mospheric pressure and room temperature shows
these gases are much less dense than air; and car-
bon dioxide is much more dense. Then our predic-

22 Zartman's method is not limited to this measurement.
One method of separating uranium 235 used spinning slits,
though the uranium atoms were electrically charged and
were given high speeds by electric fields. And mechanical
"chopper" systems are used to sort out moving neutrons.

Such choppers operate like traffic lights set for some constant
speed. The simplest prototype of Zartman's experiment is the
scheme shown in Fig. 8-8 for measuring the speed of a rifle
bullet.
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FIG. 25.12. RESULTS OF ZAIITMAN'S EMIIIMENT
The curve, drawn by a grayncss measuring-machine, shows

the experimental results. The crosses show values
predicted by kinetic theory with simple statistics.

tion pV = (n) Al v2 tells us that hydrogen and
helium molecules move faster than air molecules
( at the same temperature), and carbon dioxide
molecules slower. Here are actual values:,

Gas

Measurements at Room
Temperature and

Atmospheric Pressure
Volume Mass

hydrogen
helium
carbon dioxide
oxygen
nitrogen
air ('S oxygen

1.i nitrogen) 24 "

24 cu. meters
04
24
24
24

44

4 4

44

44

2.0 kilograms
4.0 kg

44.0 kg
32.G kg
28.0 kg

28.8 kg

* PROBLEM 7. SPEEDS

(i) If oxygen molecules move obout i mile/sec at room
temperature, how fast do hydrogen molecules move?

(it) How does the average speed of helium molecules com-
pare with that of hydrogen molecules at the same tem-
perature? (Give the ratio of "overage" speeds.)

(in) How does the speed of carbon dioxide molecules com-
pare with that of air molecules at the some tempera-
hire' (Give the ratio of "overage" speeds.)

PROBLEM 8

Making a risky guess,* say whether you would expect the
speed of sound in helium to be the some as in air, or bigger
or smaller. Test your guess by blowing an organ pipe first
with air, then with helium (or with carbon dioxide). Or
breathe in helium and then talk, using your mouth and nose
cavities as miniature echoing organ pipes. A change in the
speed of sound changes the time token by sound waves to

It is obviously risky, since we ore not considering the mechanism
of sound transmission in detail. In fact there is an unexpected
factor, which is different for helium: the ease with which the gas
heats up as sound compressions pass through. This momentary rise
of temperature makes sound compressions travel foster. The effect
is more pronounced in helium than in air, making the speed of
sound 8% bigger than simple comparison with air suggests.
Kinetic theory con predict this effect of specific heat, telling us
that helium must have a smaller heat capacity, for o good atomic-
Molecular reason.
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bounce up and down the pipe, and thus changes the fre-
quency at which sound pulses emerge from the mouth. And
that changes the musical note of the vowel sounds, which
rises to higher pitch at higher frequency.

PROBLEM 9

How would you expect the speed of sound in air to change
when the pressure is changed without any change of tem-
perature? (Try this question with the following data, for air
at room temperature: 28.8 kg of air occupy 24 cubic meters
at 1 atmosphere pressure; at 2 atmospheres they occupy
12 cubic meters.)

Diffusion

If molecules of different gases have such different
speeds, one gas should outstrip another when they
diffuse through long narrow pipes. The pipes must
be very long and very narrow so that gas seeps
through by the wandering of individual molecules
and not in a wholesale rush. The pores of unglazed
pottery make suitable "pipes" for this. See Fig. 25-
13a, b. The white jar J has fine pores that run right
through its walls. If it is filled with compressed gas
and closed with a stopper S, the gas will slowly leak
out through the pores into the atmosphere, as you
would expect. But if the pressure is the same (at-
mospheric) inside and out you would not expect
any leakage even if there are different gases inside
and outside. Yet there are changes, showing the
effects of different molecular speeds. The demon-
strations sketched start with air inside the jar and
another gas, also at atmospheric pressure, outside.
You see the effects of hy3regen molecules whizzing
into tne jar faster than air can move out; or of air
moving out faster than CO, molecules crawl in.
These are just qualitative demonstrations of "diffu-
sion," but they suggest a process for separating
mixed gases. Put a mixture of hydrogen and CO,
inside the jar; then, whether there is air or vacuum
outside, the hydrogen will diffuse out faster than the
CO and by repeating the process in several stages

Flo. 25-13a. DIFFUSZON OF GAsts
Hydrogen diffuses in through the porous wall J faster

than air diffuses out.
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///// //// ////
25-13b. DIFFUSION OF CASES

Carbon dioxide diffuses in through the porous wall, J, slower than air diffuses out.

t

you could obtain almost pure hydrogen. This is a
physical method of separation depending on a
difference of molecular speeds that goes with a
difference of molecular masses (see Fig. 25-14). It
does not require a difference of chemical properties;
so it can be used to separate "isotopes," those twin-
brothers that are chemically identical but differ
slightly in atomic masses. When isotopes were first
discovered, one neon gas 10% denser than the other,
some atoms of lead heavier than the rest, they were
interesting curiosities, worth trying to separate just
to show. Diffusion of the natural neon mixture from
the atmosphere proved the possibility But now with
two 'uranium isotopes hopelessly mixed as they
come from the mines, one easily fissionable, the
other not, the separation of the rare fissionable kind
is a matter of prime importance. Gas diffusion is
now used for this on an enormous scale. See Prob-
lem 11, and Figs. 25-15, 16 and 17. Also see Chs. 30
and 43.
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Temperature

Heating a gas increases p or V or both. With a
rise of temperature there is always an increase of
pV, and therefore of (%) N m 02. Therefore making
a gas hotter increases o2, makes its molecules move
faster. This suggests some effects of temperature.

* PROBLEM 10

(a) Would you expect the speed of sound to be greater, less,
or the same in air at higher temperature? Explain.

(b) Would you expect diffusion of gases to proceed faster,
slower, or at the some rate, at higher temperature? Ex-
plain.

Kinetic Theory To Be Continued

We cannot give more precise answers to such
questions until we know more about heat and tem-
perature and energy. Then we can extract more
predictions concerning gas friction, heat conduc-
tion, specific heats; and we shall find a way of
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FIG. 25-14. UNEQUAL DIFFUSION OF CASES
Air and carbon dioxide, each originally at atmospheric pressure, are separated by a porous barrier.

At the start, with equal volumes at the same pressure, the two populations have equal numbers of molecules.
On the average, air molecules stagger through the pores faster than CO, molecules.

Then the populations are no longer equal so the pressures are unequal.
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FIG. 25-15. SEPARATION OF URANIUM ISOTOPES BY DIFFUSION OF UF. THROUGH A POROUS BARRIER
Gas molecules hit the barrier, and the walls of its pores, many timesnet result: a few get through.

FIG. 25-18a. SEPARATION OF URANIUM ISOTOPES BY
DIFFUSION OF UF. THROUGH A POROUS BARRIER.

FIG. 25-113b. MULTISTAGE DIFFUSION SEPARATION
Mixture diffusing through in one stage is pumped to the

input of the next stage. Unosed mixture from one stage is
recycled, pumped back to the input of the preceding stage.

measuring the mass of a single molecule, so that
we can count the myriad Molecules in a sample of
gas. We shall return to kinetic theory after a s: idy
of energy. Meanwhile, it is kinetic theory that leads
us towares energy by asking a question:

What is mo2?

The expression (1/4) N m 1/3 is very important in
the study of all gases. Apart from the fraction (1/4)
it is

ABER OF MOLECULES (mug for one molecule)
What .s mug for a moving molecule? It is just the
mass multiplied by the square of the speed; but
what kind of thing does it measure? What are its
properties? Is it an important member of the series:
m mn mu2 ? We know m, mass, and treat

FIG. 25-17. SEPARATING URANIUM ISOTOPES BY DIFFUSION
To effect a fairly complete separation of
tr" F. thousands of stages are needed.



it as a constant thing whose total is universally con-
served. We know my, momentum, and trust it as a
vector that is universally conserved. Is mv3 equally
useful? Its structure is my v or Ft v or

FORCE TIME ' DISTANCE/TIME.

Then mv3 is of the form FORCE DISTANCE. Is
that product useful? To push with a force along
some distance needs an engine that uses fuel.
Fuel . . . money . . . energy. We shall find that
mv3 which appears in our theory of gases needs only
a constant factor (1/2) to make it an expression of
"energy."

PROBLEMS FOR CHAPTER 25

* 1. DERIVING MOLECULAR PRESSURE

Work through the question sheets of Problem 1 shown
earlier in this chapter. These lead up to the use of Newton's
mechanics in a molecular picture of gases.

* 2. KINETIC THEORY WITH ALGEBRA

Work through the question sheets of Problem 2.

Problems 3-10 are in the text of this chapter.

* 11. URANIUM SEPARATION (For more professional
version, see Problem 3 in Ch. 30)

Chemical experiments and arguments show that oxygen
molecules contain two atoms so we write them 0,; hydrogen
molecules have two atoms, written H,; and the dense vapor
of uranium flouride has structure UFe.

Chemical experiments tell us that the relative masses of
single atoms of 0, H, F, and U are 16, 1, 19, 238. Chemical
evidence and a brilliant guess (Avogadro's) led to the belief
that a standard volume of any gas at one atmosphere and
room temperature contains the same number of molecules
whatever the gas (the same for 0,, H,, or UFO. Kinetic
theory endorses this guess strongly (see Ch. 30).

(a) Looking back to your calculations in Problem 7 you will
see that changing from 0, to H, changes the mass of a
molecule in the proportion 32 to 2. For the same tem-
perature what change would you expect in the 7 and
therefore what change in the average ,.&ocity? (That is,
how fast are hydrogen molecules moving at room tem-
perature compared with oxygen anes? Give a ratio show-
ing the proportion of the new speed to the old. Nate you
do not have to repeat all the arithmetic, just consider the
one factor that changes.)

(b) Repeat (a) for the change from oxygen to uranium
fluoride vapor. Do rough arithmetic to find approximate
numerical value.

The Great Molecular Theory of Gases

(c) Actually there are several kinds of uranium atom The
common one has mass 238 (relative to oxygen 16) but
a rare one (0.7% of the mixture got from rocks) which is
in fact the one that undergoes fission, has mass 235.
One of the (very slow) ways of separating this valuable
rare uranium from the common one is by converting the
mixture to fluoride and letting the fluoride vapor diffuse
through a porous wall Because the fluoride of U235 has
a different molecular speed the mixture emerging after
diffusing through has different proportions.
(i) Does it became richer or poorer in U235?
(ii) Give reasons for your answer to (O.
(iii) Estimate the percentage difference between average

speeds of [1.113:+0] and [U23sFe] molecules.

(Note: As discussed in Ch. 11, a change of x % in some
measured quantity Q makes a change of about

x % in VQ .)

12. Figs. 25-13a and 25-13b show two diffusion demon-
strations. Describe what happens and interpret the experi-
ments.

* 13. MOLECULAR VIEW OF COMPRESSING GAS

(a) When an elastic ball hits a massive wall headon it
rebounds with much the same speed as its original speed.
The same happens when a ball hits a massive bat which
is held firmly. However, if the bat is moving towards the
ball, the ball rebounds with a different speed. Does it
move faster or slower?

(b) (Optional, hard: requires careful thought.) When the bat
is moving towards the ball is the time of the elastic
impact longer, shorter, or the same as when the bat is
stationary? (Hint: If elastic .... S.H.M....)

(c) When a gas in a cylinder is suddenly compressed by the
pushing in of a piston, its temperature rises. Guess at an
explanation of this in terms of the kinetic theory of
gases, with the help of (a) above.

(d) Suppose a compressed gas, as in (c), is allowed to push
a piston out, and expand. What would you expect to
observe?

* 14. MOLECULAR SIZE AND TRAVEL

A closed box contains a large number of gas molecules
at fixed temperature. Suppose the molecules magically be-
came more bulky by swelling up to greater volume, without
any increase in number or speed, without any change of
mass, and without any change in the volume of the box.

(a) How would this affect the average distance apart of the
molecules, center to center (great increase, decrease, or
little change)?

(b) Give a reason far your answer to (a).
(c) How would this affect the average distance travelled by

a molecule between one collision and the next (the
"mean free path ")?

(d) Give a reason far your answer to (c).



Abandoning a mechanical view of studying the behavior
of each individual gas molecule, Maxwell adopts a
statistical view and considers the average and distri-
bution for velocity and energy.

6 On the Kinetic Theory of Gases

James Clerk Maxwell

1872

A gaseous body is supposed to consist of a great number
of molecules moving with great velocity. During the greater
part of their course these molecules are not acted on by any
sensible force, and therefore move in straight lines with
uniform velocity. When two molecules come within a
certain distance of each other, a mutual action takes place
between them, which may be compared to the collision of
two billiard balls. Each molecule has its course changed,
and starts on a new path. I have concluded from some
experiments of my own that the collision between two hard
spherical balls is not an accurate representation of what
takes place during the encounter of two molecules. A
better representation of such an encounter will be obtained
by supposing the molecules to act on one another in a more
gradual manner, so that the action between them goes on for
a finite time, during which the centres of the molecules first
approach each other and then separate.

We shall refer to this mutual action as an Encounter
between two molecules, and we shall call the course of a
molecule between one encounter and another the Free Path
of the molecule. In ordinary gases the free motion of a
molecule takes up much more time than that occupied by an
encounter. As the density of the gas increases, the free path
diminishes, and in liquids no part of the course of a molecule
can be spoken of as its free path.

In an encounter between two molecules we know that,
since the force of the impact acts between the two bodies,
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the motion of the centre of gravity of the two molecules
remains the same after the encounter as it was before. We
also know by the principle cc the conservation of energy that
the velocity of each molecule relatively to the centre of
gravity remains the same in magnitude, and is only changed
in direction.

Let us next suppose a number of molecules in motion
contained in a vessel whose sides are such that if any
energy is communicated to the vessel by the encounters of
molecules against its sides, the vessel communicates as
much energy to other molecules during their encounters
with it, so as to preserve the total energy of the enclosed
system. The first thing we must notice about this moving
system is that even if all the molecules have the same velo-
city originally, their encounters will produce an inequality
of velocity, and that this distribution of velocity will go on
continually. Every molecule will then change both its
direction and its velocity at every encounter; and, as we
are not supposed to keep a record of the exact particulars
of every encounter, these changes of motion must appear to
us very irregular if we follow the course of a single molecule.
If, however, we adopt a statistical view of the system, and
distribute the molecules into groups, according to the
velocity with which at a given instant they happen to be
moving, we shall observe a regularity of a new kind in the
proportions of the whole number of molecules which fall into
each of these groups.

And here I wish to point out that, in adopting this
statistical method of considering the average number of
groups of molecules selected according to their velocities, we
have abandoned the strict kinetic method of tracing the
exact circumstances of each individual molecule in all its
encounters. It is therefore possible that we may arrive at
results which, though they fairly represent the facts as long
as we are supposed to deal with a gas in mass, would cease
to be applicable if our faculties and instruments were so
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sharpened that we could detect and lay hold of each mole
cule and trace it through all its course.

For the same reason, a theory of the effects of education
deduced from a study of the returns of registrars, in which no
names of individuals are given, might be found not to be
applicable to the experience of a schoolmaster who is able
to trace the progress of each individual pupil.

The distribution of the molecules according to their veloci-
ties is found to be of exactly the same mathematical form a.
the distribution of observations according to the magnitude of
their errors, as described in the theory of errors of observation.
The distribution of bullet-holes in a target according to their
distances from the point aimed at is found to be of the same
for" provided a great many shots are fired by persons of
the same degree of skill.

We have already met with the same form in the case of
heat diffused from a hot stratum by conduction. Whenever
in physical phenomena some cause exists over which we
have no control, and which produces a scattering of the
particles of matter, a deviation of observations from the truth,
or a diffusion of velocity or of heat, mathematical expressions
of this exponential form are sure to make their appearance.

It appears then that of the molecules composing the
system some are moving very slowly, a very few are moving
with enormous velocities, and the greater number with inter-
mediate velocities. To compare one such system with
another, the best method is to take the mean of the squares
of all the velocities. This quantity is called the Mean Square
of the velocity. The square root of this quantity is called
the Velocity of Mean Square.
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7 The Law of Disorder

George Gamow

1947

IF YOU pour a glass of water and look at it, you will see a clear
uniform fluid with no trace of any internal structure or motion

in it whatsoever (provided, of course, you do not shake the glass).
We know, however, that the uniformity of water is only apparent
and that if the water is magnified a few million times, there will
be revealed a strongly expressed granular structure formed by a
large number of separate molecules closely packed together.

Under the same magnification it is also apparent that the water
is far from still, and that its molecules are in a state of violent
agitation moving around and pushing one another as though they
were people in a highly excited crowd. This irregular motion of
water molecules, or the molecules of any other material substance,
is known as heat (or the mal) motion, for the simple reason that
it is responsible for the phenomenon of heat. For, although
molecular motion as well as molecules themselves are not directly
discernible to the human eye, it is molecular motion that produces
a certain irritation in the nervous fibers of the human organism
and produces the sensation that we call heat. For those organisms
that are much smaller than human beings, such as, for example,
small bacteria suspended in a water drop, the effect of thermal
motion is much more pronounced, and these poor creatures are
incessantly kicked, pushed, and tossed around by the restless
molecules that attack them from all sides and give them no rest
( Figure 77). This amusing phenomenon, known as Brownian
motion, named after the English botanist Robert Brown, who first
noticed it more than a century ago in a study of tiny plant spores,
is of quite general nature and can be observed in the study of any
kind of sufficiently small particles suspended in any kind of
liquid, or of microscopic particles of smoke and dust floating
in the air.
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If we heat the If quid the wild dance of tiny particles suspended
in it becomes more violent; In ith cooling the intensity of the
motion noticeably subsides. This leaves no doubt that we are
actually watching here ti e effect of the hidden thermal motion
of matter, and that what we usually call temperature is nothing
else but a measurement of the degree of molecular agitation. By
stt lying the dependence of Brownian motion on temperature,
it was found that at the temperature of 273° C or 459° F,

FIGURE 77

Six consecutive positions of a bacterium which is being tossed around by
molecular impacts (physically correct; bacteriologically not quite so).

thermal agitation of matter completely ceases, and all its mole-
cules come to rest. This apparently is the lowest temperature
and it has received the name of absolute zero. It would be an
absurdity to speak about still lower temperatures since apparently
there is no motion slower than absolute rest!

Near the absolute zero temperature the molecules of any sub-
stance have so little energy that the cohesive forces acting upon
them cement them together into one solid block, and all they
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can do is only quiver slightly in their frozen state. When the
temperature rises the quivering becomes more and more intense,
and at a certain stage our molecules obtain some freedom of
motion and are able to slide by one another. The rigidity of the
frozen substance disappears, and it becomes a fluid. The tem-
perature at which the melting process takes place depends on the
strength of the cohesive forces acting upon the molecules. In
some materials such as hydrogen, or a mixture of nitrogen and
oxygen which form atmospheric air, the cohesion of molecules
is very weak, and the thermal agitation breaks up the frozen
state at comparatively low temperatures. Thus hydrogen exists in
the frozen state only at temperatures below 14° abs ( i.e., below
259° C), whereas solid oxygen and nitrogen melt at 55° abs
and 64° abs, respectively (i.e. 218° C and 209° C). In other
substances the cohesion between molecules is stronger and they
remain solid up to higher temperatures; thus pure alcohol re-
mains frozen up to 130° C, whereas frozen water (ice) melts
only at 0° C. Other substances remain solid up to much higher
temperatures; a piece of lead will melt only at +327° C, iron at
+1535° C, and the rare metal known as osmium remains solid up
to the temperature of +2700° C. Although in the solid state of
matter the molecules are strongly bound to their places, it does
not mean at all that they are not affected by thermal agitation.
Indeed, according to the fundamental law of heat motion, the
amount of energy in every molecule is the same for all sub-
stances, solid, liquid, or gaseous at a given temperature, and the
difference lies only in the fact that whereas in some cases this
energy suffices to tear off the molecules from their fixed positions
and let them travel around, in other cases they can only quiver
on the same spot as angry dogs restricted by short chains.

This thermal quivering or vibration of molecules forming a
solid body can be easily observed in the X-ray photographs de-
scribed in the previous chapter. We have seen indeed that, since
taking a picture of molecules in a crystal lattice requires a con-
siderable time, it is essential that they should not move away
from their fixed positions during the exposure. But a constant
quivering around the fixed position is not conducive to good
photography, and results in a somewhat blurred picture. This
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oxygen and nitrogen at 183° C and 196° C, alcohol at
+78° C, lead at +1620° C, iron at +3000° C and osmium only
above +5300° C.1

The breaking up of the beautiful crystalline structure of solid
bodies forces the molecules first to crawl around one another
like a pack of worms, and then to fly apart as though they were a
flock of frightened birds. But this latter phenomenon still does
not represent the limit of the destructive power of increasing
thermal motion. If the temperature rises still farther the very
existence of the molecules is threatened, since the ever increasing
violence of intermolecular collisions is capable of breaking them
up into separate atoms. This thermal dissociation, as it is called,
depends on the relative strength of the molecules subjected to it.
The molecules of some organic substances will break up into
separate atoms or atomic groups at temperatures as low as a few
hundred degrees. Other more sturdily built molecules, such as
those of water, will require a temperature of over a thousand
degrees to be destroyed. But when the temperature rises to
several thousand degrees no molecules will be left and the matter
will be a gaseous mixture of pure chemical elements.

This is the situation on the surface of our sun where the tem-
perature ranges up to 6000° C. On the other hand, in the com-
paratively cooler atmospheres of the red stars,2 some of the mole-
cules are still present, a fact that has been demonstrated by the
methods of spectral analysis.

The violence of thermal collisions at high temperatures not
only breaks up the molecules into their constituent atoms, but
also damages the atoms themselves by chipping off their outer
electrons. This thermal ionization becomes more and more pro-
nounced when the temperature rises into tens and hundreds of
thousands of degrees, and reaches completion at a few million
degrees above zero. At these tremendously hot temperatures,
which are high above everything that we can produce in our
laboratories but which are common in the interiors of stars and
in particular inside our sun, the atoms as such cease to exist.
All electronic shells are completely stripped off, and the matter

1 All values given for atmospheric pressure.
2 See Chapter XI.
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(Courtesy of Dr. 31. L. /lugging. Eastman Kodak Laboratory.)

PLATE

Photograph of Hexamethylbenzene molecule magnified 175,000,000
times.
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becomes a mixture of bare nuclei and free electrons rushing
wildly through space 'and colliding with one another with tre-
mendous force. However, in spite of the complete wreckage of
atomic bodies, the matter still retains its fundamental chemical
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FIGURE 79

The destructive effect of temperature.

characteristics, inasmuch as atomic nuclei remain intact. If the
temperature drops, the nuclei will recapture their electrons and
the integrity of atoms will be reestablished.

In order to attain complete thermal dissociation of matter, that
is to break up the nuclei themselves into the separate nucleons
(protons and neutrons) the temperature must go up to at least
several billion degrees. Even inside the hottest stars we do not
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find such high temperatures, though it seems very likely that tem-
peratures of that magnitude did exist several billion years ago
when our universe was still young. We shall return to this exciting
question in the last chapter of this book.

Thus we see that the effect of thermal agitation is to destroy
step by step the elaborate architecture of matter based on the law
of quantum, and to turn this magnificent building into a mess of
widely moving particles rushing around and colliding with one
another without any apparent law or regularity.

2. HOW CAN ONE DESCRIBE DISORDERLY MOTION?

It would be, however, a grave mistake to think that because of
the irregularity of thermal motion it must remain outside the
scope of any possible physical description. Indeed the fact itself
that thermal motion is completely irregular makes it subject to a
new kind of law, the Law of Disorder better known as the Law of
Statisticd Behavior. In order to understand the above statement
let us turn our attention to the famous problem of a "Drunkare.'s
Walk." Suppose we watch a drunkard who has been leaning
against a lamp post in the middle of a large paved city square
(nobody knows how or when he got there) and then has sud-
denly decided to go nowhere in particular. Thus off he goes,
making a few steps in one direction, then some more steps in an-
other, and so on and so on, changing his course every few steps
in an entirely unpredictable way (Figure 80). How far will be
our drunkard from the lamp post after he has executed, say, a
hundred phases of his irregular zigzag journey? One would at
first think that, because of the unpredictability of each turn, there
is no way of answering this question. If, however, we consider
the problem a little more attentively we will find that, although
we really cannot tell where the drunkard will be at the end of his
walk, we can answer the question about his most probable dis-
tance from the lamp post after a given large number of turns. In
order to approach this problem in a vigorous mathematical way
let us draw on the pavement two co-ordinate axes with the origin
in the lamp post; the X-axis coming toward us and the Y-axis to
the right. Let R be the distance of the drunkard from the lamp
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post after the total of N zigzags (14 in Figure 80). If now XN and
YN are the projections of the Nth leg of the track on the corre-
sponding axis, the Pythagorean theorem gives us apparently:

R2= (Xi-FX2+2(3 ±x02±(y1 + y2+y3+

where X's and Y's are positive or negative depending on whether
our drunkard was moving to or from the post in this particular

..01,
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FIGURE 80

Drunkard's walk.

_ -

phase of his walk. Notice that since his motion is completely dis-
orderly, there will be about as many positive values of X's and
Y's as there are negative. In calculating the value of the square
of the terms in parentheses according to the elementary rules of
algebra, we have to multiply each term in the bracket by itself
and by each of all other terms.
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Thus:
(X2+X2+X3+ XN)2

= (X1 +X2+X3+ XN) (X1 +X2+X3+ XN)
= Xi2+XiX2+XiX3+ X22+ X:X2 +

This long sum will contain the square of all X's (X12, X22 . XN2 ),

and the so-called "mixed products" like X1X2, X2X3, etc.
So far it is simple arithmetic, but now comes the statistical point

based on the disorderliness of the drunkard's walk. Since he was
moving entirely at random and would just as likely make a step
toward the post as away from it, the values of X's have a fifty-fifty
chance of being either positive or negative. Consequently in
looking through the "mixed products" you are likely to find always
the pairs that have the same numerical value but opposite signs
thus canceling each other, and the larger the total number of
turns, the more likely it is that such a compensation takes place.
What will be left are only the squares of X's, since the square is
always pdsitive. Thus the whole thing can be writ.ln as
Xi2+X22+ XN3=N X2 where X is the average length of the
projection of a zigzag link on the X-axis.

In the same way we find that the second bracket containing
Y's can be reduced to: NY2, Y being the average projection of the
link on the Y-axis. It must be again repeated here that what
we have just done is not strictly an algebraic operation, but is
based on the statistical argument concerning the mutual cancel-
lation of "mixed products" because of the random nature of the
pass. For the most probable distance of our drunkard from the
lamp post we get now simply:

112=N (X2-142)
Or

R = Y2

But the average projections of the link on both axes is simply
a 45° projection, so that VX2 +Y2 right is (again because of the
Pythagorean theorem) simply equal to the average length of the
link. Denoting it by 1 we get:

R =1. VI

In plain words our result means: the most probable distance of
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diffusion is a rather slow process; when you put a lump of sugar
into your cup of tea you had better stir it rather than wait until
the sugar molecules have been spread throughout by their own
motion.

Just to give another example of the process of diffusion, which
is one of the most important processes in molecular physics, let
us consider the way in which heat is propagated through an iron
poker, one end of which you put into the fireplace. From your
own experience you know that it takes quite a long time until
the other end of the poker becomes uncomfortably hot, but you
probably do not know that the heat is carried along the metal
stick by the process of diffusion of electrons. Yes, an ordinary
iron poker is actually stuffed with electrons, and so is any metallic
object. The difference between a metal, and other materials, as
for example glass, is that the atoms of the former lose some of
their outer electrons, which roam all through the metallic lattice,
being involved in irregular thermal motion, in very much the
same way as the particles of ordinary gas.

The surface forces on the outer boundaries of a piece of metal
prevent these electrons from getting out,3 but in their motion
inside the material they are almost perfectly free. If an electric
force is applied to a metal wire, the free unattached electrons
will rush headlong in the direction of the force producing the
phenomenon of electric current. The nonmetals on the other hand
are usually good insulators because all their electrons are bound
to be atoms and thus cannot move freely.

When one end of a metal bar is placed in the fire, the thermal
motion of free electrons in this part of the metal is considerably
increased, and the fast-moving electrons begin to diffuse into the
other regions carrying with them the extra energy of heat. The
process is quite similar to the diffusion of dye molecules through
water, except that instead of having two different kinds of par-
ticles (water molecules and dye molecules) we have here the
diffusion of hot electron gas into the region occupied by cold
electron gas. The drunkard's walk law applies here, however, just

3 When we bring a metal wire to a high temperature, the thermal motion
of electrons in its inside becomes more violent and some of them come out
through the surface. This is the phenomenon used in electron tubes and
familiar to all radio amateurs.
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as well and the distances through which the heat propagates
along a metal bar increase as the square roots of corresponding
times.

As our last example of diffusion we shall take an entirely dif-
ferent case of cosmic importance. As we shall learn in the fol-
lowing chapters the energy of our sun is produced deep in its
interior by the alchemic transformation of chemical elements.
This energy is liberated in the form of intensive radiation, and
the "particles of light," or the light quanta begin their long jour-
ney through the body of the sun towards its surface. Since light
moves at a speed of 300,000 km per second, and the radius of
the sun is only 700,000 km it would take a light quantum only
slightly over two seconds to come out provided it move1 without
any deviations from a straight line. However, this is far from being
the case; on their way out the BA' quanta undergo innumerable
collisions with the atoms and electrons in the material of the sun.
The free pass of a light quantum in solar matter is about a centi-
meter (much longer than a free pass of a molecule!) and since
the radius of the sun is 70,000,000,000 cm, our light quantum must
make (7.1010)2 or 5.1021 drunkard's steps to reach the surface.

Since each step requires
3.1010

or 3404 sec, the entire time of

travel is 3.10-° x 5. 1021=1.5 . 1013 sec or about 200,000 yr! Here
again we see how slow the process of diffusion is. It takes light
2000 centuries to travel from the center of the sun to its surface,
whereas after coming into empty intraplanetary space and
traveling along a straight line it covers the entire distance from
the sun to the earth in only eight minutes!

3. COUNTING PROBABILITIES

This case of diffusion represents only one simple example of
the application of the statistical law of probability to th3 problem
of molecular motion. Before we go farther with that discussion,
and make the attempt to understand the all-important Law of
Entropy, which rules the thermal behavior of every material
body, be it a tiny droplet of some liquid or the giant universe of
stars, we have first to learn more about the ways in which the
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probability of different simple or complicated events can be cal-
culated.

By far the simplest problem of probability calculus arif es when
you toss a coin. Everybody knows that in this case (without
cheating) there are equal chances to get heads or tails. One
usually says that there is a fifty-fifty chance for heads or tails,
but it is more customary in mathematics to say that the chances
are half and half. If you add the chances of getting heads and
getting tails you get i -i-i =1. Unity in the theory of probability
means a certainty; you are in fact quite certain that in tossing a

1

FIGURE 83

Four possible combinations in tossing two coins.

coin you get either heads or tails, unless it rolls under the sofa and
vanishes tracelessly.

Suppose now you drop the coin twice in succession or, what is
the same, you drop 2 coins simultaneously. It is easy to see that
you have here 4 different possibilities shown in Figure 83.

In the first case you get heads twice, in the last case tails
twice, whereas the two intermediate cases lead to the same
result since it does not matter to you in which order ( or in which
coin) heads or tails appear. Thus you say that the chances of
getting heads twice are 1 out of 4 or i the chances of getting
tails hvice are also 1, whereas the chances of heads once and tails
once are 2 out of 4 or 1. Here again 4 + / +i =1 meaning that you
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are certain to get one of the 3 possiblecombinations. Let us see
now what happens if we toss the coin 3 times. There are altogether
8 possibilities summarized in the following table:

First tossing
Second
Third

h h
h h
h t
I II

h h t t t t
t t h h t t
h t h t h t
II III II III III IV

If you inspect this table you find that there is 1 chance out of 8
of getting heads three times, and the same of getting tails three
times. The remaining possibilities are equally divided between
heads twice and tails once, or heads once and tails twice, with
the probability three eighths for each event.

Our table of different possibilities is growing rather rapidly,
but let us take one more step by tossing 4 times. Now we have
the following 16 possibilities:

First tossing
Second
Third
Fourth

hhhhhthhtthhththththththththt
I

h

II

h

II

h

III

h

II

h
t

IIIIIIIV

h
t

hthhhhtthht
t

II

t

IIIIIIIVIIIIVIV

t t t t
t

t t
t
t

V
Here ve have 114. for the probability of heads four times, and

exactly the same for tails four times. The mixed cases of heads
three times and tails once or talk fkrpA fitylao orlai 11.*A. ........



suostance.
After solid material melts, the molecules still remain, together,

since the thermal agitation, though strong enough to dislocate
them from the fixed position in the crystalline lattice, is not yet
sufficient to take them completely apart. At still higher tem-
peratures, however, the cohesive forces are not able to hold the
molecules together any more and they fly apart in all directions
unless prevented from doing so by the surrounding walls. When
this happens, of course, the result is matter in a gaseous state.
As in the melting of a solid, the evaporation of liquids takes place
at different temperatures for different materials, and the sub-
stances with a weaker internal cohesion will turn into vapor at
lower temperatures than those in which cohesive forces are
stronger. In this case the process also depends rather essentially
on the pressure under which the liquid is kept, since the outside
pressure evidently helps the cohesive forces to keep the molecules
together. Thus, as everybody knows, water in a tightly closed
kettle boils at a lower temperature than will water in an open one.
On the other hand, on the top of high mountains, where atmos-
pheric pressure is considerably less, water will boil well belcr.v
100° C. It may be mentioned here that by measuring the tem-
perature at which water will boil, one can calculate atmospheric
pressure and consequently the distance above sea level of a given
location.

But do not follow the example of Mark Twain who, according
to his story, once decided to put an aneroid barometer into a
boiling kettle of pea soup. This will not give you any idea of the
elevation, and the copper oxide will make the soup taste bad.

The higher the melting point of a substance, the higher is its
boiling point. Thus liquid hydrogen boils at 253° C, liquid
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the probability of getting heads three or four times in succession
is the product of probabilities of getting it separately in each
tossing (3 itir =ix ). Thus if somebody asks
you what the chances are of getting heads each time in ten toss-
ings you can easily give the answer by multiplying 3 by 3 ten
times. The result will be .00098, indicating that the chances are
very low indeed: about one chance out of a thousand! Here we
have the rule of "multiplication of probabilities," which states
that if you want several different things, you may determine the
mathematical probability of getting them by multiplying the
mathematical probabilities of getting the several individual ones.
If there are many things you want, and each of them is not par-
ticularly probable, the chances that you get them all are dis-
couragingly low!

There is also another rule, that of the "addition of probabilities,"
which states that if you want only one of several things (no matter
which one), the mathematical probability of getting it is the sum
of mathematical probabilities of getting individual items on your
list.

This can be easily illustrated in the example of getting an equal
division between heads and tails in tossing a coin twice. What
you actually want here is either "heads once, tails twice" or "tails
twice, heads once." The probability of each of the above com-
binations is 3, and the probability of getting either one of them
is 3 plus a or 3. Thus: If you want "that, and that, and that . . ."



three, four, ten, and a hundred tossings. You see that with the
increasing number of tossings the probability curve becomes
sharper and sharper and the maximum at fifty-fifty ratio of heads
and tails becomes more and more pronounced.

Thus whereas for 2 or 3, or even 4 tosses, the chances to have
heads each time or tails each time are still quite appreciable, in
10 tosses even 90 per cent of heads or tails is very improbable.

FIGURE 84

Relative number of tails and heads.

For a still larger number of tosses, say 100 or 1000, the probability
curve becomes as sharp as a needle, and the chances of getting
even a small deviation from fifty-fifty distribution becomes prac-
tically nil.

Let us now use the simple rules of probability calculus that we
have just learned in order to judge the relative probabilities of
various combinations of five playing cards which one encounters
in the well-known game of poker.
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In case you do not know, each player in this game is dealt
5 cards and the one who gets the highest combination takes the
bank. We shall omit here the additional complications arising
from the possibility of exchanging some of your cards with the
hope of getting better ones, and the psychological strategy of
bluffing your opponents into submission by making them believe
that you have much better cards than you actually have. Although
this bluffing actually is the heart of the game, and once led the
famous Danish physicist Niels Bohr to propose an entirely new
type of game in which no cards are used, and the players simply
bluff one another by talldng about the imaginary combinations
they have, it lies entirely outside the domain of probability
calculus, being a purely psychological matter.

FIGURE 85

A flush (of spades).

In order to get some exercise in probability calculus, let us
calculate the probabilities of some of the combinations in the
game of poker. One of these combinations is called a "flush" and
represents 5 cards all of the same suit (Figure 85).

If you want to get a. flush it is immaterial what the first card
you get is, and one has only to calculate the chances that the
other four will be of the same suit. There are altogether 52 cards
in the pack, 13 cards of each suit.' so that after you get your first
card, there remain in the pack 12 cards of the same suit. Thus
the chances that your second card will be of the proper suit are
12/51. Similarly the chances that the third, fourth, and fifth cards

4We omit here the complications arising from the presence of the "joker,"
an extra card which can be substituted for any other card according to the
desire of the player.
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pairs, with coinciding birthdays. A. a matter of fact, there are
more chances thai there is such a coincidence than that there is not.

You can verify that fact by making a birthday list including
about 24 persons, or more simply, by comparing the birth dates
of 24 persons whose names appear consecutively on any pages of
some such reference book as "Who's Who in America," opened
at random. Or the probabilities can be ascertained by using the
simple rules of probability calculus with which we have become
acquainted in the problems of coin tossing and poker.

Suppose we try first to calculate the chances that in a company
of twenty-four persons everyone has a different birth date. Let
us ask the first person in the group what is his birth -late; of
course this can be any of the 365 days of the year. Now, what is
the chance that the birth date of the second person we approach
is different from that of the first? Since this (second) person
could have been born on any day of the year, there is one chance
out of 365 that his birth date coincides with that of the first one,
and 364 chances out of 365 (i.e., the probability of 364/365) that
it does not. Sinniar ly, the probability that the third person has a
birth date cl efferent from that of either the first or second is
363/365, siice two days of the year have been excluded. The
probabilities that tw next persons we ask have different birth
dates from the ones we have approached before are then: 362,'";45,
361/365, 360/365 and so on up to the last person for whom the

3)
probability is

(365-2 342
or .

365
Since we are trying to learn what the probability is that one of
these coincidences of birth dates exists, we have to multiply all
the above fractions, thus obtaining fc_ the probability of all the
persor,- having different birth dates the value:

884 363 362 342x --x x--365 365 365 365

One can arrive at the product in a few minutes by using cer-
tain methods of higher mathematics, but if you don't know them
you can do it the hard way by direct multiplication,5 which
would not take so very much time. The result is 0.46, indicating

5 Use a logarithmic table or slide rule if you cant
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that the probability that there will beano coinciding birthdays
is slightly less than one half. In Wild' words there are only 46
chances in 100 that no two of your two dozen friends will have
birthdays on the same day, and 54 chances in 100 that two or
more will. Thus if you have 25 or more friends, and have never
been invited to two birthday parties on the same date you may
conclude with a high degree of probability that either most of
your friends do not organize their birthday parties, or that they
do not invite you to them!

The problem of coincident birthdays represents a very fine
example of how a common-sense judgment concerning the
probabilities of - omplex events can be entirely wrong. The
author has put this question to a great many people, including
many prominent scientists, and in all cases except oneo was
offered bets ranging from 2 to 1 to 15 to 1 that no such co-
incidence will occur. If he had accepted all these bets he would
be a rich ITIP*1 by 'lc wl

It cannot be repeat xl too often that if we calculate the
probabilities of different events according to the given rules and
pick out the most probable of them, we are not at all sure that
this is exactly what is going to happen. Unless the number of
tests we are making runs into thousands, millions or still better
into billions, the predicted results are only "likely" and not at all
"certain." This slackening of the laws of probability when dealing
with a comparatively small number of tests limits, for example,
the usefulness of statistical analysis for deciphering various code'
and cryptograms which are limited only to comparatively short
notes. Let us examine, for example, the famous case described
by Edgar Allan Poe in his well-known story "The Cold Bug."
He tells us about a certain Mr. Legrand who, strolling along a
deserted beach in Soith Carolina, picked up a piece of parchment
half buried in the wet sand. When subjected to the warmth of
the fire burning gaily in Mr. Legrand's beach hut, the parchment
revealed some mysterious signs written in ink which was invisible
when cold, but which turned red and was quite legible when
heated. There was a picture of a skull, suggesting that the docu-

This exception was, of course, a Hungarian mathematician (see the
beginning of the first chapter of this book).
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yards. If he had not turned, but had gone straight, he would be a
hundred yards awaywhich shows that it is definitely advan-
tageous to be sober when taking a walk.
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FIGURE 81

Statistical distribution of six walking drunkards around the lamp post.

The statistical nature of the above example is revealed by the
fact that we refer here only to the most probable distance and not
to the exact distance in each individual case. In the case of an
individual drunkard it may happeu, though this is not very prob-
able, that he does not make any turns at all and thus goes far
away from the lamp post along the straight line. It may also
happen, that he turns each time by, say, 180 degrees thus re-
turning to the lamp post after every second turn. But if a large
nu Tiber of drunkards all start from the same lamp post walking
in different zigzag paths and not interfering with one another
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ment was written by a pirate, the head of a goat, proving beyond
any doubt that the pirate was none other than the famous Captain
Kidd, and several lines of typographical sips apparently indi-
cating the whereabouts of a hidden treasure ( see Figure 87).

We take it on the authority of Edgar Allan _ :_e that the pirates
of the seventeenth century were acquainted with such typo-
graphical signs as semicolons and quotation marks, and such
others as: t, +, and If.

Being in need of money, Mr. Legrand used all his mental
powers in an attempt to decipher the mysterious cryptogram and

63 eft i300)64:48,011)3104.08t811toPes) I:0'
*Rs300S4 t;44(8841e1;8)%041reiett :4:(399
44.2 (s..4)8 I 8.;#06Ness)))61Olt, ; 0 U.9; 10
81 ; 8: 83:1; 4811T3948Steg 880V8I (t.,)91)
(88;4010;41914;mu: a;;?;

.1u...............

FIGURE 87

Captain Kidd's Message.



ana me larger me number or turns tney maze in tneir alsorciery
walk, the more accurate is the rule.

Now substitute for the drunkards some microscopic bodies such
as plant spores or bacteria suspended in liquid, and you will have
exactly the picture that the botanist Brown saw in his microscope.
True the spores and bacteria are not drunk, but, as we have said
above, they are being incessantly kicked in all possible directions
by the surrounding molecules involved in thermal motion, and
are therefore forced to follow exactly the same irregular zigzag
trajectories as a person who has completely lost his sense of
direction under the influence of alcohol.

If you look through a microscope at the Brownian motion of a
large number of small particles suspended in a drop of water,
you will concentrate your attention on a certain group. of them
that are at the moment concentrated in a given small region ( near
the "la..ip post"). You will notice that in the course of time they
become gradually dispersed all over the field of vision, and that
their average distance from the origin increases in proportion
to the square root of the time interval as required by the mathe-
matical law by which we calculated the distance of the drunkard's
walk.

The same law of motion pertains, of course, to each separate
molecule in our drop of water; but you cannot see separate mole-
cules, and even if you could, you wouldn't be able to distinguish
between them. To make such motion visible one must use two
different kinds of molecules distinguishable for example by their
different colors. Thus we can fill one half of a chemical test tube
with a water solution of potassium permanganate, which will give
to the water a beautiful purple tint. If we now pour on the top
of it some clear fresh water, being careful not to mix up the two
layers, we shall notice that the color gradually penetr ,'.:.s the
clear water. If you wait sufficiently long you will find that all the

67

The Law of Disorder

probable and not at all certain. In fact if the secret message had
been "You will find a lot of gold and coins in an iron box in woods
two thousand yards south from an old but on Bird Island's north
tip" it would not have contained a single "el But the laws of
chance were favorable to Mr. Legrand, and his guess was really
correct.

Having met with success in the first step, Mr. Legrand became
overconfident and proceeded in the same way by picking up the
letters in the order of the probability of their occurrence. In the
following table we give the symbols appearing in Captain Kidd's
message in the order of their relative frequency of use:

Of the character 8 there are 33 e <---> e
26 a t

4 19 o h
I -16 1

d
h

Y4l
T.

i o
r
n

( 16

13

5 12 n
r

,% a
6 11
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1 8
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All vv citca LUG 1111.)1MUIGS are pacxeu ratner ugntiy k m con-
trast to the arrangement of those in a gas) the average free path
of each molecule between two successive collisionsis very short,
being only about one hundred millionths of an inch. Since on
the other hand the molecules at room temperature move with the
speed of about one tenth of a mile per second, it takes only one
million-millionth part of a second for a molecule to go from
one collision to another. Thus in the course of a single second

a
FIGURE 82

each dye molecule will be engaged in about a million million
consecutive collisions and will change its direction of motion as
many times. The average distance covered during the first second
will be one hundred millionth ofan inch (the length of free path)
times the square root of a million millions. This gives the average
diffusion speed of only one hundredth of an inch per second; a
rather slow progress considering that if it were not deflected by
collisions, the same molecule would be a tenth of a mile awayl
If you wait 100 sec, the molecule will have struggled through
10 times ( VTOZ=10) as great distance, and in 10,000 sec, that
is, in about 3 hr, the diffusion will have carried the coloring
100 times farther (V10000 =100), that is, about 1 in. away. Yes,

English language. Therefore it was logical to assume that the
signs listed in the broad column to the left stood for the letters
listed opposite them in the first narrow column to the right. But
using this arrangement we find that the beginning of Captain
Kidd's message reads: ngiisgunddrhaoecr . .

No sense at alll .

What happened? Was the Old pirate so tricky as to use special
words that do not contain letters that follow the same rules of
frequency as those in the words normally used in the English
language? Not at all; it is simply that the text of the message is
not long enough for good statistical sampling and the most prob-
able distribution of letters does not occur. Had Captain Kidd
hidden his treasure in such an elaborate way that the instrvctions
for its recovery occupied a couple of pages, or, still better an
entire volume, Mr. Legrand would have had a much better
chance to solve the riddle by applying the rules of frequency.

If you drop a coin 100 times you :.lay be pretty sure that it will
fall with the head up about 50 times, but in only 4 drops you
may have heads three times and tails once or vice versa. To make
a rule of it, the larger the number of trials, the more accurately
the laws of probability operate.

Since the simple method of statistical analysis failed because
of an insufficient number of letters in the cryptogram, Mr. Le-
grand had to use an analysis based on the detailed structure of
cliffPrPnt wArtic in +ha rtIctl;elm lattentontes n11
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degrees and thirteen minutes northeast by north. Main branch
seventh limb east side. Shoot from the left eye of the death's
head. A bee-line from the tree through the shot fifty feet out."

The correct meaning of the diCerent characters as finally de-
ciphered by Mr. Legrand is shown in the second column of the
table on page 217, and you see that they do not correspond exactly
to the distribution that might reasonably be expected on the
basis of the laws of probability. It is, of course, because the text
is too short and therefore does not furnish an ample opportunity

FIGURE 88

for the laws of probability to operate. But even in this small
"statistical sample" we can notice the .ndency for the letters
to arrange themselves in the order required by the theory of
probability, a tendency that would become almost an unbreak-
able rule if the number of letters in the message were much
larger.

There seems to be only one example (excepting the fact that
insurance companies do not break up) in which the predictions
of the theory of probability have actuey been checked by a
very large number of trials. This is a famous problem of the
American flag and a box of kitchen matches.
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To tackle this particular problem of probability you will need
an American flag, that is, the part of it consisting of red and
white stripes; if no flag is available just take a large piece of
paper and draw on it a number of parallel and equidistant lines.
Then you need a box of matchesany kind of matches, provided
they are shorter than the width of the stripes. Next you will need
a Greek pi, which is not something to eat, but just a letter of the
Greek alphabet equivalent to our "p." It looks like this: ir. In
addition to being a letter of the Greek alphabet, it is used to

signify the ratio of the circumference of a circle to its diameter.
v9u may know that numerically it equals 3.1415926535 . . .
(many more digits are known, but we shall not need them all.)

Now spread the flag on a table, toss a match in the air and
watch it fall on the flag (Figure 88). It may fall in such a way
that it all remains within one stripe, or it may fall across the
boundary between two stripes. What are the chances that one or
another will take place?

Following our procedure in ascertaining other probabilities,
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we must first count the number of cases that correspond to one
or another possibility.

But how can you count all the possibilities when it is clear
that a match can fall on a flag in au infinite number of different
ways?

Let us examine the question a little more closely. The position
of the fallen match in respect to the stripe on which it falls
can be characterized by the distance of the middle of the match
from the nearest boundary line, and by the angle that the match
forms with the direction of the stripes in Figure 89. We give
three typical examples of fallen matches, assuming, for the sake
of simplicity, that the length of the match equals the width of
the stripe, each being, say, two inches. If the center of the match
is rather close to the boundary line, and the angle is rather large
(as in case a) the match will intersect the line. If, on the con-
trary, the angle is small (as in case b) or the distance is large
(as is case c) the match will remain within the boundaries of
one stripe. More exactly we may say that the match will intersect
the line if the projection of the half-of-the-match on the vertical
direction is larger than the half width of the stripe (as in case a),
and that no intersection will take place if the opposite is true
(as in case b). The above statement is represented graphically
on the diagram in the lower part of the picture. We plot on the
horizontal axis (abscissa) the angle of the fallen match as given
by the length of the corresponding arc of radius 1. On the vertical
axis (ordinate) we plot the length of the projection of the half-
match length on the vertical direction; in trigonometry this length
is known as the sinus corresponding to the given arc. Jt is clear
that the sinus is zero when the arc is zero since in that case the
match occupies a horizontal position. When the arc is which
corresponds to a straight angle,7 the sinus is equal to unity,
since the match occupies a vertical position and thus coincides
ith its projection. For intermediate values of the arc the sinus

is given by the familiar mathematical wavy curve known as
sinusoid. (In Figure 89 we have only one quarter of a complete
wave in the interval between 0 and ,r /2.)

7The circumference of a circle with the radius 1 is w tunes its diameter
or 2 T. Thus the length of one quadrant of a circle is 2 r/ 4 or r/2.
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Having constructed this diagram we can use it with con-
venience for estimating the chances that the fallen match will or
will not cross the line. In fact, as we have seen above (look again
at the three examples in the upper part of Figure 89) the match
will cross the boundary line of a stripe if the distance of the
center of the match from the boundary line is less than the cor-
responding projection, that is, less than the sinus of the arc.
That means that in plotting that distance and that arc in our
diagram we get a point below the sinus line. On the contrary
the match that falls entirely within the boundaries of a stripe
will give a point above the sinus line.

Thus, according to our rules for calculating probabilities, the
chances of intersection will stand in the same ratio to the
chalices of nonintersection as the area below the curve does to
the area above it; or the probabilities of the two events may be
calculated by dividing the two areas by the entire area of the
rectangle. It can be proved mathematically (cf. Chapter II) that
the area of the sinusoid presented in our diagram equals exactly

1. Since the total area of the rectangle is
2
1r--x 1 =2 we find the

probability that the match will fall across the boundary (for

matches equal in length to the stripe width 1) is: =-2.
ir/2

The interesting fact that ir pops up here where it might be
least expected was first observed by the eighteenth century
scientist Count Buffon, and so the match-and-stripes problem now
bears his name.

An actual experiment was carried out by a diligent Italian
mathematician, Lazzerini, who made 3408 match tosses and ob-
served that 2169 of them intersected the boundary line. The
exact record of this experiment, checked with the Buffon formula,

substitutes for r a value of 2+3408 or 3.1415929, differing from
2169

the exact mathematical value only in the seventh decimal place!
This represents, of course, a most amusing proof of the validity

of the probability laws, but not more amusing than the deter-
mination of a number "2" by tossing a coin several thousand
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times and dividing the total number of tosses by the number
of times heads come up. Sure enough you get in this case:
2.000000 . . . with just as small an error as in Lazzerines deter-
mination of 7r.

4. THE "MYSTERIOUS" ENTROPY

From the above examples of probability cakulu:, all of them
pertaining to ordinary life, we have learned that predictions of
that sort, being often disappointing when small numbers are in-
volved, become better and better when we go to really large
numbers. This makes these laws particularly applicable to the
description of the almost innumerable quantities of atoms or
molecules that form even the smallest piece of matter we can
conveniently handle. Thus, whereas the statistical law of Drunk-
ard's Walk can give us only approximate results when applied
to a half-dozen drunkards who make perhaps two dozen turns
each, its application to billions of dye molecules -undergoing
billions of collisions every second leads to the most rigorous
physical law of diffusion. We can also say that the dye that was
originally dissolved in only one half of the water in the test tube
tends through the profess of diffusion to spread uniformly
through the entire liquid, because, such uniform distribution is
more probable than the original one.

For exactly the same reason the room in which you sit reading
this book is filled uniformly by air from wall to wall and from
floor to ceiling, and it never even occurs to you that the air in the
room can unexpectedly collect itself in a far corner, leaving you to
suffocate in your chair. However, this horrifying event is not at
all physically impossible, but only highly improbable.

To clarify the situation, let us consider a room divided into
two equal halves by an imaginary vertical plane, and ask our-
selves about the most probable j.:stribution of air molecules be-
tween the two parts. The problem is of course identical with the
coin-tossing problem discussed in the previous chapter. If we
pick up one single molecule it has equal chances of being in the
right or in the left half of the room, in exactly the same way as
the tossed coin can fall on the table with heads or tails up.



The second, the third, and all the other molecules also have
equal chances of being in the right or in the left part of the room
regardless of where the others are.* Thus the problem of dis-
tributing molecules between the two halves of the room is
equivalent to the problem of heads-and-tails distribution in a
large number of tosses, and as you have seen from Figure 84,
the fifty-fifty distribution is in this case by far the most probable
one. We also see from that figure that with the increasing number
of tosses ( the number of air molecules in our case) the prob-
ability at 50 per cent becomes greater and greater, turning prac-
tically into a certainty when this number becomes very large.
Since in the average-size room there are about 10" molecules,*
the probability that all of them collect simultaneously in, let us
say, the right part of the room is:

( ) 10-3.

i.e., 1 out of 10.8.""
On the other hand, since the molecules of air moving at

the speed of about 0.5 km per second require only 0.01 sec
to move from one end of the room to the other, their dis-
tribution in the room will be reshuffled 100 times each second.
Consequently the waiting time for the right combination is
102**.999.999.999:999.999:999:999.998 sec as compared with only 1017 sec
representing the total age of the universe! Thus you may go on
quietly reading your book without being afraid of being suf-
focated by chance.

To take another example, let u onsider a glass of water
standing on the table. We know that the molecules of water,
being involved in the irregular thermal motion, are moving at
high speed in all possible directions, being, however, prevented
from flying apart by the ohesive forces between them.

Since the direction of motion of each separate molecule is
° In fact, owing to large distances between separate molecules of the gas,

the space is not at all crowded and the presence of a large number of
molecules in a given volume does not at all prevent the entrance of new
molecules.

9A room 13 ft by 15 ft, with a 9 ft ceiling has a volume of 1350 cu ft, or
5.104 cu cm, thus containing 5.104 g of air. Since the average mass of air
molecules is 3-1 -86x10-4'=5x 10's g, the total number of molecules is
5-104/5-10-44=134". means: approximately equal to.)
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governed entirely by the law of chance, we may consider the
possibility that at a certain moment the velocities of one half
of the molecules, namely those in the upper part of the glass,
will all be directed upward, whereas the other half, in the lower
part of the glass, will move downwards." In such a case, the co-
hesive forces acting along the horizontal plane dividing two
groups of molecules will not be able to oppose their "unified
desire for parting," and we shall observe the unusual physical
phenomenon of half the water from the glass being spontaneously
shot up with the speed of a bullet toward the ceilings

Another possibility is that the total energy of thermal motion
of water molecules will be concentrated by chance in those
located in the upper part of the glass, in which case the water
near the bottom suddenly freezes, whereas its upper layers begin
to boil violently. Why have you never seen such things happen?
Not because they are absolutely impossible, but only because
they are extremely improbable. In fact, if you try to calculate
the probability that molecular velocities, originally distributed
at random in all directions, will by pure chance assume the dis-
tribution described above, you arrive at a figure that is just about
as small as the probability that the molecules of air will collect
in one corner. In a similar way, the chance that, because of
mutual collisions, some of the molecules will lose most of their
kinetic energy, while the other part gets a considerable excess
of it, is also negligibly small. Here again the distribution of
velocities that corresponds to the usually observed case is the
one that possesses the largest probability.

If now we start with a case that does not correspond to the
most probable arrangement of molecular positions or velocities,
by letting out some gas in one corner of the room, or by pouring
some hot water on top of the cold, a sequence of physical
changes will take place that will bring our system from this less
probable to a most probable state. The gas will diffuse through
the room until it fills it up uniformly, and the heat from the top
of the glass will flow toward the bottom until all the water as-

"We must consider this half-and-half distribution, since the possibility
that all molecules move in the same direction is ruled out by the mechanical
law of the conservation of momentum.
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But please do not think that in 500 hands you are sure to get a
flush. You may get none, or you may get two. This is only prob-
ability calculus, and it may happen that you will be dealt many
more than 500 hands without getting the desired combination, or
on the contrary that you may be dealt a flush the very first time
you have the cards in your hands. All that the theory of prob.

FIGURE 86

Full house.

ability can tell you is that you will probably be dealt 1 flush in 500
hands. You may also learn, b'- following the same methods of
calculation, that in playing 30,000,000 games you will probably
get 5 aces (including the joker) about ten times.

Another combination in poker, which is even rarer and there-
fore more valuable, is the so-called "full hand," more popularly
called "full house." A full house consists of a "pair" and "three of
a kind" (that is, 2 cards of the same value in 2 suits, and 3 cards
of the same value in 3 suitsas, for example, the 2 fives and
3 queens shown in Figure 86).

If you want to get a full house, it is immaterial which 2 cards
you get first, but when you get them you must have 2 of the re-
maining 3 cards match one of them, and the other match the

sumes an equal temperature. Thus we may say that all physical
processes depending on the irregular motion of molecules go in
the direction of increasing probability, and the state of equilib-
rium, when nothing more happens, corresponds to the maximum
of probability. Since, as we have seen from the example of the
air in the room, the probabilities of various molecular distribu-
tions are often expressed by inconveniently small numbers (as
104'1" for the air collecting in one half of the room), it is cus-
tomary to refer to their logarithms instead. This quantity is known
by the name of entropy, and plays a prominent role in all ques-
tions connected with the irregular thermal motion of matter. The
foregoing statement concerning the probability changes in
physical processes can be now rewritten in the form: Any spon-
taneous changes in a physical system occur in the direction of
increasing entropy, and the final state of equilibrium corresponds
to the maximum possible value of the entropy.

This is the famous Law of Entropy, also known as the Second
Law of Thermodynamics (the First Law being the LaW of Con-
servation of Energy), and as you see there is nothing in it to
frighten you.

The Law of Entropy can also be called the Law of Increasing
Disorder since, as we have seen in all the examples given above,
the entropy reaches its maximum when the position and velocities
of molecules are distributed completely at random so that any
attprrml. fA intrAtilioa CAM. AVA sat. Zr.
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is 4/48. Thus the total probability of a full house is:

6
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48

120

117600

or about one half of the probability of the flush.
In a similar way one can calculate the probabilities of other

combinations as, for example, a "straight" (a sequence of cards),
and also take into account the changes in probability introduced
by the presence of the joker and the possibility of exchanging
the originally dealt cards.

By such calculations one finds that the sequence of seniority
used in poker does really correspond to the order of mathematical:
probabilities. It is not known by the author whether such an
arrangement was proposed by some mathematician of the old
times, or was established purely empirically by millions of
players risking their money in fashionable gambling salons and
little dark haunts all over the world. If the latter was the case,
we must admit that we have here a pretty good statistical study
of the relative probabilities of complicated events!

Another interesting example of probability calculation, an ex-
ample that leads to a quite unexpected answer, is the problem of
"Coinciding Birthdays." Try to remember whether you have ever
been invited to two different birthday parties on the same day.
You will probably say that the chances of such double invitations
are very small since you have only about 24 friends who are
likely to invite you, and there are 385 days in the year on which
their birthdays may fall. Thus, with so many possible dates to
choose from, there must be very little chance that any 2 of your
24 friends will have to cut their birthday cakes on the same day.

However, unbelievable as it may sound, your judgment here is
quite wrong. The truth is that there is a rather high probability
that in a company of 24 people there are a pair, or even several
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(for example, through friction), the heat energy can never go
completely into mechanical motion. This rules out the possibility
of the so-called "perpetual motion motor of the second kind,"11
which would extract the heat from the material bodies at normal
temperature, thus cooling them down and utilizing for doing
mechanical work the energy so obtained. For example, it is im-
possible to build a steamship in the boiler of which steam is
generated not by burning coal but by extracting the heat from the
ocean water, which is first pumped into the engine room, and
then thrown back overboard in the form of ice cubes after the
heat is extracted from it.

But how then do the ordinary steam-engines turn the heat
into motion without violating the Law of Entropy? The trick is
made possible by the fact that in the steam engine only a part of
the heat liberated by burning fuel is actually turned into energy,
another larger part being thrown out into the air in the form of
exhaust steam, or absorbed by the specially arranged steam
coolers. In this case we have two opposite changes of entropy
in our system: (1) the increase of entropy corresponding, to the
transformation of a part of the heat into mechanical energy of
the pistons, and (2) the decrease of entropy resulting from the
flow of another part of the heat from the hot-water boilers into
the coolers. The Law of Entropy requires only that the total
amount of entropy of the system increase, and this can be easily
iltTATICfPil htf malf;nef ccsewssnr1 C Al , lalorras iLess, ate, gwel.



molecules we can bring some order in one region, if we do not
mind the fact that this will make the motion in other parts still
more disorderly. And in many practical cases, as in all kinds of
heat engines, we do not mind it.

5. STATISTICAL FLUCTUATION

The discussion of the previous section must have made it clear
to you that the Law of Entropy and all its consequences is based
,Intirely on the fact that in large-scale physics we are always
dealing with an immensely large number of separate molecules,
so that any prediction based on probability considerations be-
comes almost an absolute certainty. However, this kind of predic-
tion bccomes considerably less certain when we consider very
small amounts of matter. .

Thus, for example, if instead of considering the air filling a
large room, as in the previous example, we take a much smaller
volume of gas, say a cube measuring one hundredth of a
nticron12 each way, the situation will look entirely different. In
fact, since the volume of our cube is 10-18 cu cm it will contain

10-18.10-s
only 80 molecules, and the chance that all of them3.10-23

will collect in one half of the original volume is (i)ao=10-ia,
On the other hand, because of the much smaller size of the

cube, the molecules will be reshuffled at the rate of 5409 times
per second (velocity of 0.5 km per second and the distance of
only 10-6 cm) so that about once every second we shall find that
one half of the cube is empty. It goes without saying that the
cases when only a certain fraction of molecules become con-
centrated at one end of our small cube occur considerably more
often. Thus for example the distribution ;21 which 20 molecules
are at one end and 10 molecules at the other ( i.e only 10 extra
molecules collected at one end) will occur with the frequency
of orox5.101o= 10-3 x 5 x 101°= 5 x 107, that is, 50,000,000 times
per second.

Thus, on a small scale, the distribution of molecules in the air is
12 One micron, usually denoted by Creek letter Mu ( 14 , is 0.0001 cm.
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far from being uniform. If we could use sufficient magnification,
we should notice the small concentration of molecules being
instantaneously formed at various points of the gas, only to be
dissolved aga:r1, and be replaced by other similar concentrations
appearing at other points. This effect is known as fluctuation of
density and plays an important role in many physical phenomena.
Thus, for example, when the rays of the sun pass through the
atmosphere these inhomogeneities cause the scattering of blue
rays of the spectrum, giving to the sky its familiar color and mak-
ing the sun look redder than it actually is. This effect of redden-
ing is especially pronounced during the sunset, when the sun
rays must pass through the thicker layer of air. Were these fluctua-
tions of density not present the sky would always look completely
black and the stars could be seen during the day.

Similar, though less pronounced, fluctuations of density and
pressure also take place in ordinary liquids, and another way
of describing the cause of Brownian motion is by saying that
the tiny particles suspended in the water are pushed to and fro
because of rapidly varying changes of pressure acting on their
opposite sides. When the liquid is heated until it is close to its
boiling point, the fluctuations of density become more pro-
nounced and cause a slight opalescence.

We can ask ourselves now whether the Law of Entropy applies
to such small objects as those to which the statistical fluctuations
become of primary importance. Certainly a bacterium, which
through all its life is tossed around by molecular impacts, will
sneer at the statement that heat cannot go over into mechanical
motion! But It would be more correct to say in this case that the
Law of Entropy loses its sense, rather than to say that it is
violated. In fact all that this law says is that molecular motion
cannot be transformed completely into the motion of large
objects containing immense numbers of separate molecules. For
a bacterium, which is not much larger than the molecules them-
selves, the difference between the thermal and mechanical motion
has practically disappeared, and it would consider the molecular
collisions tossing it around in the same way as we would consider
the kicks we get from our fellow citizens in an excited crowd.
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If we were bacteria, we should be able to build a perpetual
motion motor of the second kind by simply tying ourselves to a
flying wheel, but then we should not have the brains to use it
to our advantage. Thus there is actually no reason for being
sorry that we are not bacteria!
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The "taw of averages" applies to all randomly moving
objects whether in kinetic theory or in city traffic.
This story from The New Yorker magazine raises in
fictional form the question of the meaning of a siatisti-
cal law.

8 The Law

Robert M. Coates

1947

THE first intimation that things _had conspired together to upset cradi-
were getting out of hand came tion. Beginning almost exactly at seven
one early-fall evening in the late

nineteen-forties. What happened, sim-
ply, was that between seven and nine
o'clock on that evening the Triborough
Bridge had the heaviest concentration
of outbound traffic in its entire history.

This was odd, for it was a weekday
evening (to be precise, a Wednesday),
and though the weather was agreeably
mild and clear, with a moon that was
close enough to being full to lure a cer-
tain number of motorists out of the
city, these facts alone were not enough
to explain the phenomenon. No other
bridge or main highway was affected,
and though the two preceding nights
h...1 been equally balmy and moonlit, on
both of these the bridge traffic had run
close to normal.

The bridge personnel, at any rate,
was caught entirely unprepared. A main
artery of traffic, like the Triborough,
operates under fairly predictable condi-
tions. Motor travel, like most other
large-scale human activities, obeys the
Law of Averagesthat great, ancient
rule that states that the actions of people
in the mass will always follow consistent
patternsand on the basis of past ex-
perience it had always been possible to
foretell, almost to the last digit, the
number of can that would cross the
bridge at any given hour of the day or
night. In this case, though, all rules
were broken.

The hours from seven till nearly mid-
night are normally quiet ones on the
bridge., But on that night it was as if
all the motorists in the city, or at any
rate a staggering proportion of them,

o'clock, cars poured onto the bridge in
such numbers and with such rapidity
that the staff at the toll booths was over-
whelmed almost from the start. It was
soon apparent that this was no momen-
tary congestion, and as it became more
and more obvious that the traffic jam
promised to be one of truly monumental
proportions, added details of police were
rushed to the scene to help handle it.

Cars streamed in from all direc-
tionsfrom the Bronx approach and
the Manhattan one, from 125th Street
and the East River Drive. (At the peak
of the crush, about eight-fifteen, ob-
servers on the bridge reported that the
drive was a solid line of car headlights
as far south as the bend at Eighty-ninth
Street, while the congestion crosstown
in Manhattan disrupted traffic as far
West as Amsterdam Avenue.) And per-
haps the most confusing thing about
the whole manifestation was that there
seemed to be no reason for it.

Now and then, as the harried toll-
booth attendants made change for the
seemingly endless stream of cars, they
would question the occupants, and it
soon became clear that the very partici-
pants in the monstrous ticup were as
ignorant of its cause as anyone else
was. A report made by Sergeant Alfonse
O'Toole, who commanded the detail in
charge of the Bronx approach, is typical.
"I kept askin' them," he said," 'Is th:rc
night football somewhere that we don't
know about? Is it the races you're goin'
to?' But the funny thing was half the
time they'd he askin' nip. 'What's the
crowd for, Mac?' they would say. And

I'd, just look at them. There was one
guy I mind, in a Ford convertible with
a girl in the seat beside him, and when
he asked me, I said to him, 'Hell, you're
in the crowd, ain't you?' I said. 'What
brings you here?' And the dummy just
looked at me. 'Me?' he says. 'I just
come out for 2drive in the moonlight.
But if I'd known there'd be a crowd like
this ...' he says. And then he asks me,
'Is there any place I can turn around
and get out of this?' " As the Herald
Tribune summed things up in its story
next morning, it "just looked as if every-
body in Manhattan who owned a
motorcar had decided to drive out on
Long Island that evening."

THE incident was unusual enough
to make all the front pages next

morning, and because of this, many sim-
ilar events, which might otherwise have
gone unnoticed, received attention. The
proprietor of the Aramis Theatre, on
Eighth Avenue, reported that on sev-
eral nights in the recent past his audi-
torium had been practically empty,
while on others it had been jammed to
suffocation. Lunchroom owners noted
that increasingly their patrons were de-
veloping a habit of making runs on spe-
cific items; one day it would be the roast
shoulder of veal with pan gravy that
Was ordered almost exclusively, while
the next everyone would be taking the
V; nna loaf, and the roast veal went
begging. A man who ran a small no-
tions store in Bayside revealed that over
a period of four days two hundred and
seventy-four successive customers had
entered his shop and asked for a stool
of pink thread.

Reprinted by perulission.
Copyright 0 1947 The New Yorker Magazine, Inc. 95
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These were news items that would
ordinarily have gone into the papers as
fillers or in the sections reserved for
oddities. Now, however, they seemed
to have a more serious significance. It
was apparent at last that something de-
cioedly strange was happening to peo-
ple's habits, and it was as unsettling
as those occasional moments on excur-
sion boats when the passengers are
moved, all at once, to rush to one side
or the other of the vessel. It was
not till one day in December when,
almost incredibly, the Twentieth Cen-
tury Limited left New York for Chi-
cago with just three passengers aboard
that business leaders discovered how
disastrous the new trend could be, too.

Until then, the New York Central,
for instance, could operate confidently
or the assumption that although there
might be several thousand men in New
York who had business relations in
Chicago, on any single day no more
and no lessthan some hundreds of
them would have occasion to go there.
The play producer could be sure that his
patronage would sort itself out and
that roughly as many persons would
want to see the performance on Thurs-
day as there had been on Tuesday or
Wednesday. Now they couldn't be sure
of anything. The Law of Averages had
gone by the board, and if the effect on
business promised to be catastrophic, it
was also singularly unnerving for the
general customer.

The lady starting downtown for a
day of shopping, for example, could
never be sure whether she would find
Macy's department store a seething
mob of other shopperl or a wilderness
of empty, echoing aisles and unoccupied
salesgirls. And the uncertainty pro-
duced a strange sort of jitteriness in the
individual when faced with any impulse
to action. "Shall we do it or shan't
we!" people kept asking themselves,
knowing that if they did do it, it might
turn out .that thousands of other indi-
viduals had decided similarly; knowing,
too, that if they didn't, they might miss
the one glorious chance of all chances
to have Jones Beach, say, practically to
themselves. Business languished, and a
sort of desperate uncertainty rode ev-
eryone.

AT this juncture, it was inevitable
that Congress should be called on

for action. In fact, Congress called on
itself, and it must be said that it rose
nobly to the occasion. A committee
was appointed, drawn from both Houses
and headed by Senator J. Wing Sloop-

96

er (R.), of Indiana, and though after
considerable investigation the commit-
tee was forced reluctantly to conclude
that there was no evidence of Com-
muuist instigation, the unconscious sub-
versiveness of the people's present con-
duct was obvious at a glance. The
problem was what to do about it. You
can't indict a whole nation, particu-
larly on such vague grounds as these
were. But, as Senator Slooper bold-
ly pointed out, "You can control it,"
and in the end a system of reeduca-
tion and reform was decided upon, de-
signed to lead people back toagain
we quote Senator Slooper"the basic
regularities, the homely averageness of
the American way of life."

In the course of the committee's in-
vestigations, it had been discovered, to
everyone's dismay, that the Law of
Averages had never been incorporated
into the body of federal jurisprudence,
and though the upholders of States'
Rights rebelled violently, the oversight
was at once corrected, both by Consti-
tutional amendment and by a lawthe
Hills-Slooper Actimplementing it.
According to the Act, people werere-
quired to be average, and, as the simplest
way of assuring it, they were divided
alphabetically and their permissible
activities catalogued accordingly. Thus,
by the plan, a person whose name began
with "G," "N," or "U," for example,
could attend the theatre only on Tues-
days, and he could go to baseball games
only on Thursdays, whereas his visits
to a haberdashery were confined to the
hours between tea o'clock and noon on
Mondays.

The law, of course, had i3 disadvan-
tages. It had a crippling effect on thea-
tre parties, among other social functions,
and the cost of enforcing it was un-
believably heavy. In the end, too, so
many amendments had to be added to
it---sitch as the one permitting gentle-
men to take their fiancees (if accredit-
ed) along with them to various events
and functions no matter what letter the

.said fiancees' names began withthat
the courts were frequently at a loss to
interpret it when confronted with vio-
lations.

In its way, though, the law did serve
its purpose, for it did inducerather
mechanically, it is true, but still ade-
quatelya return to that average ex-
istence that Senator Slooper desired. All,
indeed, would have been well if a year
or so later disquieting reports had not
begun to seep in from the backwoods.
It seemed that there, in what had hith-
erto been considered to be marginal
areas, a strange wave of prosperity was

making itself felt. Tennessee moun-
taineers were buying Packard converti-
bles, and Sears, Roebuck reported that
in the Ozarks their sales of luxury items
had gone up nine hundred per cent. In
the scrub section. of Vermont, men who
formerly had barely been able to scratch
a living from their rock-strewn acres
were now sending their daughters to
Europe and ordering expensive cigars
from New York. It appeared that the
Law of Diminishing Returns was going
haywire, too. ROBERT M. COATES



How can a viewer distinguish v;hether a film is being
run forward or backward? The direction of increasing
disorder helps to fix the direction of the arrow of time.

9 The Arrow of Time

Jacob Bronowski

1964

This chapter and those that follow deal with time.
In particular. this chapter looks at the direction of
time. Why does time go one way only? Why cannot
we turn time backw-xds? Why are we not able to
travel in time, back and forth?

The idea of time travel has fascinated men. Even
folklore contains legends about travel in time. And
science fiction, from The Time Machine onwards, has
been pre-occupied with this theme. Plainly, men feel
themselves to be imprisoned in the single direction
of time. They would like to move about in time as
freely as they can move in space.

And time is in some way like space. Like space,
time is not a thing but is a relation between things.
The essence of space is that it describes an order

among thingshigher or lower, in front or behind,
to left or to right. The essence of time also is that it
describes an orderearlier or later. Yet we cannot
move things in time as we can in space. Time must
therefore describe some fundamental process in
nature which we do not control.

It is not easy to discuss time without bringing in
some way of measuring ita clock of one sort or
another. Yet if all the clocks in the world stopped,
and if we all lost all inner sense of time, we could
sell tell earlier from later. The essential nat:..-e of
time does not depend on clocks. That is the point of
this chapter, and we will begin by illustrating it
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from very simple and common experiences.
The three pairs of pictures point the way. They

help to show what it is that enables us to tell earlier
from later without a clock. In each pair, the pictures
are arranged at random, and not necessarily in the
sequence of time. Yet in all except the first pair, it
is easy to arrange the pictures; the sequence in time
is obvious. Only the first pair does not betray its time
sequence. What is the difference between the first
pair of pictures and the other two pairs?

We get a clue to the difference when we study the
arrangement of the things in each picture. In the first
pair, we cannot really distinguish one arrangement
from another; they are equally tidy and orderly. The
two pictures of the first pair show a shot at billiards.
The billiard balls are as well arranged after the shot
as before; there is no obvious difference between
the arrangements.

The situation is different in the other two pairs.
A broken egg is an entirely different arrangement
from a whole egg. A snooker pyramid is quite
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different from a jumble of balls.
And not only are the arrangements here different.

Once they are different, it is quite clear which
arrangement comes before the other. Whole eggs
come before broken ones. The snooker pyramid
comes before the spread of the balls.

In each case, the earlier arrangement is more
ordered than the later. Time produces disorder; that
is the lesson of these pictures. And it is also the
lesson of this chapter. The arrow of time is loss
of order.

In a game of snooker, we know quite well that the
highly ordered arrangement of the balls at the be-
ginning of the game comes before the disordered
arrangement at the end of the first shot. Indeed, the
first shot is called 'breaking the pyramid': and
breaking is a destructive actionit destroys order.
It is just not conceivable that fifteen balls would
gather themselves up into a pyramid, however skilful
the player. The universe does not suddenly create
order out of disorder.



These pictures show the same thing again. When
a spot of powdered dye is put on the surface of

-water, it spreads out and gradually dissolves. Dye
would never come out of solution and stream to-
gether by itself to gather in a spot on the surface.
Again lime is braking down order and making dis-
order. It disperses the dye randomly through the
water.

We know at once that the stones in the picture be-
low were shaped and erected a very long time ago.
Their rough, weathered surfaces bear the mark of
time. It is still possible to reconstruct the once orderly
arrangement of the stones of Stonehenge. But the
once orderly surface of each stone cannot be re-
covered. Atom by atom, the smooth surface has
been carried away, and is lost to chaos.

And here finally is the most interesting of all the
pictures in which time betrays itself. In these shots
from an old film the heroine has been tied to the
railsa splendid tradition of silent films. A train is
approaching, but of course it stops just in time. The
role of the heroine would seem to call for strong
nerves as well as dramatic ability, if she has to trust
the engine driver to stop the locomotive exactly
where he is told. However, the last few yards of the
approach are in fact done by a trick. The locomotive
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is startedstarted close to the heroine and is backed away:
and the film is then run backwards.

There is only one thing that gives this trick away.
When the film is run backwards, the smoke visibly
goes into the funnel instead of coming out of it. We
know that in reality, smoke behaves like the spread-
ing dye: it becomes more disorderly, the further it
gets from the funnel. So when we see disorder coming
before order, we realise that something is wrong.
Smoke does not of itself collect together and stream
down a funnel.

One thing remains to clear up in these examples.
We began with an example in which earlier and later
were equally well ordered. The example was a shot
rt billiards. The planets in their orbits would be
L.ither example, in which there would be nothing
to say which arrangement comes first.

Then does time stand still in billiards and planetary
motion? No, time is still doing its work of disorder.
We may not see the effects at once, but they are
there. For billiard balls and planets gradually lose
material from their surface, just like the stones of
Stonehenge. Time destroys their orderly shape too.
A billiard ball is not quite the same after a shot
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as before it. A planet is not quite the same in each
successive orbit. And the changes are in the direction
of disorder. Atoms are lost from ordered structures
and return to chaos. The direction of time is from
order to disorder.

That is one reason why perpetual motion machines
are impossible. Time cannot be brought to a stand-
still. We cannot freeze the arrangement of the atoms, ..
even in a tiny corner of the universe. And that is what
we should have to do to make a perpetual motion
machine. The machine would have to remain the
same, atom for atom, for all time. Time :would have
to stand still for it.

For example, take the first of these three machines
from a famous book of Perpetual Motion Machines.
It is meant to be kept going by balls in each sector,
which roll from the centre to the rim and back again
as the wheel turns. Of course it does not work. There
is friction in the bearing of the wheel, and more
friction between the balls and the tracks they run on.
Every movement rubs off a few atoms. The bearings
wear, the balls lose their smooth roundness. Time
does not stand still.

The second machine is more complicated and
sillier. It is designed to work like a waterwheel with
little balls instead of water. At the bottom the balls
roll out of their compartments down the chute, and
on to a moving belt which is to lift them to the top
again. That is how the machine is meant to keep
going. In fact, when we built it, it came to a stop
every few minutes.

The pendulum arrangement in the third picture also
comes from the book of Perpetual Motion Machines.
A ball runs backwards and foe wards in the trough
on top to keep it going. There are also elastic strings
at each t.nd for good measure. This machine at least
woks for short bursts. But as a perpetual motion
machine, it has the same defects as the others.
Nothing can be done to get rid of friction; and
where there is friction, there must be wear.

This last point is usually put a little differently.
Every machine has friction. It has to be supplied
with energy to overcome the friction. And this
energy cannot be recovered. In fact, this energy is
lost in heat, and in wearthat is, in moving atoms
out of their order, and in losing them. That is an-
other way of putting the same reasoning, and shows
equally (in different language) why a perpetual
motion machine cannot work.

Before we put these fanciful monsters out of mind,
it is worth seeing how beautifully a fine machine can
be made. It cannot conquer the disorder of time, it
cannot get rid of friction, but it can keep them to a
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minimum. So here on this page are two splendid
clocks which make no pretence to do the impossible,
yet which go as far as it is possible to go by means
of exact and intelligent craftsmanship.

These clocks are not intended to be perpetual
motion machines. Each has an outside source of
energy to keep it going. In the clock at the top, it is
ordinary clockwork which tips the platform when-
ever the ball has completed a run. The clock below
is more tricky: it has no clockwork spring, and
instead is driven by temperature differences in the
air. But even if there was someone to wind one clock,
and suitable air conditions for the other, they could
not run for ever. They would wear out. That is, their
ordered structure would slowly become more dis-
ordered until they stopped. The clock with no spring
would run for several hundred years, but it could
not run for ever.

To summarise: the direction of time in the uni-
verse is marked by increasing disorder. Even without
clocks and without an inner sense of time, we could
tell later and earlier. 'Later' is characterised by the
greater disorder, by the growing randomness of the
universe.

We ought to be clear what these descriptive
phrases mean. Order is a very special arrangement;
and disorder means the loss of what makes itIpecial.
When we say that the universe is becoming more
disordered, more random, we mean that the special
arrangements in this place or that are being evened
out. The peaks are made lower, the holes are filled
in. The extremes disappear, and all parts sink more
and more towards a level average. Disorder
and randomness are not wild states; they are simply
states which have rio special arrangement, and in
which everything is therefore near the average.

Even in disorder, of course, things move and
deviate round their average. But they deviate by
chance, and chance then takes them back to the
average. It is only in exceptional cases that a devia-
tion becomes fixed, and perpetuates itself. These
exceptions are fascinating and important, and we
now turn to them.

The movement towards randomness, we repeat, is
not uniform. It is statistical, a general trend. And
(as we saw in Chapter 8) the units that make up a
general trend do not all flow in the same direction.
Here and there, in the midst of the flow towards
an average of chaos, there are places where the flow
is reversed for a time. The most remarkable of these
reversals is life. Life as it were is running against
time. Life is toe very opposite of randomness.

How this can come about can be shown by an
analogy. The flow of time is like an endless shuffling
of a pack of cards. A typical hand dealt after long
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shuffling will be randomsay four diamonds, a
couple of spades, four clubs, and three heats. This
is the sort of hand a bridge player expects to pick up
several times in an evening. Yet every now and then
a bridge player picks up a freak hand. For example,
from time to time a player picks up all thirteen
spades. And this does not mean that the pack was
not properly . haled. A hand of thirteen spades can
arise by chaike, and does; the odds against it are
high, but they are not astronomic. Life started with
a chance accident of this kind. The odds against it
were high, but they were not astronomic.

The special thing about life is that it is self-
perpetuating. The freak hand, instead of disappear-
ing in the next shuffle, reproduces itself. Once the
thirteen spades of life are dealt, they keep their
order, and they impose it on the pack from then on.
This is what distinguishes life from other freaks,
other deviations from the average.

There are other happenings in the universe that
run against the flow of time for a while. The forma-
tion of a star from the interstellar dust is such a
happening. When a star is formed, the dust that
forms it becomes less random; its order is increased,
not decreased. But stars do not reproduce themselves.
Once the star is formed, the accident is over. The
flow towards disorder starts again. The deviation
begins to ebb back towards the average.



Life is a deviation of a special kind; it is a self-
reproducing accident. Once its highly ordered
arrangement occurs, once the thirteen spades happen
to be dealt in one hand, it repeats itself. The order
was reached by chance, but it then survives because
it is able to perpetuate itself, and to impose itself on
other matter.

It is rare to find in dead matte: behaviour of this
kind which illustrates the way in which life imposes
its order. An analogy of a kind, however, is found
in the growth of crystals. When a supercooled solu-
tion is ready to form crystals, it needs something to
start it off. Now we introduce the outside accident,
the freal: hand at bridge. That is, we introduce a tiny
crystal that we have made, and we drop it in. At
once the crystal starts to grow and to impose its
own shape round it.

In this analogy, the first crystal is a seed, like the
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seed of life. Without it, the supercooled solution
would remain dead, unchanged for hours or even
days. And like the seed of life, the first crystal im-
poses its order all round it. It reproduces itself many
times over.

Nearly five hundred years ago, Leonardo da Vinci
described time as the destroyer of all things. So we
have seen it in this chapter. It is the nature of time
to destroy things, to turn order into disorder. This
indeed gives time its single directionits arrow.

But the arrow of time is only statistical. The
general trend is towards an average chaos; yet there
are deviations which move in the opposite direction.
Life is the most important deviation of this kind. It
is able to reproduce itself, and so to perpetuate the
order which began by accident. Life runs against the
disorder of time.



The biography of this great Scottish phys'cist, renowned
both for kinetic theory and for his mathematical formu-
lation of the laws of electricity ---1 ietifm, is pre-
sented in two parts. The secc ,;.is selection is
in Reader 4.

10 James Clerk Maxwell

James R. Newman

1955

JAMES CLERK MAXWELL was the greatest theo-
retical physicist of the nineteenth century. His

discoveries opened a new epoch of science, and much of what
distinguishes our world from his is due to his work. Because
his ideas found perfect expression in mathematical symbol-
ism, and also because his most spectacular triumph the
prophecy of the existence of electromagnetic waves was
the fruit of theoretical rather than experimental researches, he
is often cited as the supreme example of a scientist who builds
his systems entirely with pencil and paper. This notion is
false. He was not, it is true, primarily an experimentalist. He
had not the magical touch of Faraday, of whom Helmholtz
once observed after a visit to his laboratory that "a few wires
and some old bits of wood and iron seem to serve him for the
greatest discoveries." Nonetheless he combined a profound
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physical intuition with a formidable mathematical capacity to
produce results "partaking of both natures." On the one hand,
Maxwell never lost sight of the phenomena to be explained,
nor permitted himself, as he said, to be drawn aside from the
subject in pursuit of "analytical subtleties"; on the other hand,
the use of mathematical methods conferred freedom on his in-
quiries and enabled him to gain physical insights without com-
mitting himself to a physical theory. This blending of the
concrete and the abstract was the characteristic of almost all
his researches.

Maxwell was born at Edinburgh on November 13, 1831,
the same year Faraday announced his famous discovery of
electromagnetic induction. He was descended of the Clerks of
Penicuick in Midlothian, an old Scots family distinguished no
less for their individuality, "verging on eccentricity," than
for their talents. His forbears included eminent lawyers,
judges, politicians, mining speculators, merchants, poets, mu-
sicians, and also the author (John Clerk) of a thick book on
naval tactics; .whose naval experience appears to have been
confined entirely to sailing mimic men of war on the fishponds
at Penicukk. The name Maxwell was assumed by James's
father, John Clerk, on inheriting the small estate of Middlebie
from his grandfather Sir George Clerk Maxwell.

At Glenlair, a two-day carriage ride from Edinburgh and
"very much in the wilds," in a house built by his father shortly
after he married, Maxwell passed his infancy and early boy-
hood. It was a happy time. He was an only son (a sister, born
earlier, died in infancy) in a close-knit, comfortably-off fam-
ily. John Clerk Maxwell had been called to the Scottish bar
but took little interest in the grubby pursuits of an advocate.
Instead the laird managed his small estates, took part in county
affairs and gave loving attention to the education of his son.
He was a warm and rather simple man with a nice sense of
humor and a penchant for doing things with what he called
"judiciosity"; his main characteristic, according to Maxwell's
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biographer Lewis Campbell,* was a "persistent practical in-
terest in all useful purposes." Maxwell's mother, Frances Cay,
who came of a well-known Northumbrian family, is described
as having a "sanguine, active temperament."

Jamesie, as he was called, was a nearsighted, lively, affec-
tionate little boy, as persistently inquisitive as his father and
as fascinated by mechanical contrivances. To discover of any-
thing "how it doos" was his constant aim. "What's the go of
that?" he would ask, and if the answer did aot satisfy him he
would add, "But what's the particular go of that?" His first
creation was a set of figures for a "wheel of life," a scientific
toy that produced the illusion of continuous movement; he
was fond of making things with his hands, and in later life
knew how to design models embodying the most complex mo-
tions and other physical processes.

When Maxwell was nine, his mother died of cancer, the
same disease that was to kill him forty years later. Her death
drew father and son even more closely together, and many in-
timate glimpses of Maxwell in his younger years emerge from
the candid and affectionate letters he wrote to his father from
the time he entered school until he graduated from Cambridge.

Maxwell was admitted to Edinburgh Academy as a day
student when he was ten years old. His early school experi-
ences were painful. The master, a dryish Scotsman whose
reputation derived from a book titled Account of the Irregular
Greek Verbs and from the fact that he was a good disciplin-
arian, expected his students to be orderly, well-grounded in
the usual subjects and unoriginal. Maxwell was deficient in
all these departments. He created something of a sensation
because of his clothes, which had been designed by his strong-

The standard biography (London, 1882) is by Lewis Campbell and William
Garnett. Campbell wrote the first part, which portrays Maxwell's life; Garnett
the second part, dealing with Maxwell's contributions to science. A shorter
biography, especially valuable for the scientific exposition. is by the mathems
titian R. T. Glazebrook (James Clerk Maxwell and Modern Physics, London,
1901). In this essay, material in quotation marks, otherwise unattributed, is
from Campbell and Garnett.
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Illuminated letter was written by Maxwell to his father in 1843, when the
younger Maxwell was 11. The letter refers to a lecture by the American
frontier artist. George Catlin. (Scientific American)



minded father and included such items as "hygienic" square-
toed shoes and a lace-frilled tunic. The boys nicknamed him
"Dafty" and mussed him up, but he was a stubborn child and
in time won the respect of his classmates even if he continued
to puzzle them. There was a gradual awakening of mathe-
matical interests. He wrote his father that he had made a
"tetra hedron, a dodeca hedron, and two more hedrons that I
don't know the wright names for," that he enjoyed playing
with the "boies," that he attended a performance of some
"Virginian minstrels," that he was composing Latin verse and
making a list of the Kings of Israel and Judah. Also, he sent
him the riddle of the simpleton who "wishing to swim was
nearly drowned. As soon as he got out he swore that he would
never touch water till he had learned to swim." In his four-
teenth year he won the Academy's mathematical medal and
wrote a paper on a mechanical method, using pins and thread,
of constructing perfect oval curves. Another prodigious little
boy, Rene Descartes, had anticipated Maxwell in this field, but
Maxwell's contributions were completely independent and
original. It was a wonderful day for father and son when they
heard "Jas's" paper on ovals read before the Royal Society of
Edinburgh by Professor James Forbes: "Met," Mr. Maxwell
wrote of the event in his diary, "with very great attention and
approbation generally."

After six years at the Academy, Maxwell entered the Uni-
versity of Edinburgh. He was sixteen, a restless, enigmatic,
brilliantly talented adolescent who wrote not very good but
strangely prophetic verse about the destiny of matter and
energy:

When earth and bun are froren clods,
When all its energy degraded
Matter to aether shall have faded

His friend and Ifiographer Campbell records that James was
completely neat in his person "though with a rooted objection
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to the vanities of starch and gloves," and that he had- a "pious
horror of destroying anything even a scrap of writing pa-
per." He had a quaint humor, read voraciously and passed
much time in mathematical speculations and in chemical, mag-
netic and optical experiments. "When at table he often seemed
abstracted from what was going on, being absorbed in observ-
ing the effects of refracted light in the finger glasses, or in try-
ing some experiment with his eyes seeing around a corner,
making invisible stereoscopes, and the like. Miss Cay [his aunt]
used to call his attention by crying, `Jamesie, you're in a
prop!' [an abbreviation for mathematical proposition]." He
was by row a regular visitor at the meetings of the Edinburgh
Royal Society, and two of his papers, on "Rolling Curves"
and on the "Equilibrium of Elastic Solids," were published
in the Trarsactions. The papers were read before the Society
by others "for it was not thought proper for a boy in a round
jacket to mount the rostrum there." During vacations at Glen-
lair he was tremendously active and enjoyed reporting his
multifarious doings in long letters to friends. A typical com-
munication, when Maxwell was seventeen, tells Campbell of
building an "electro-magnetic machine," taking off an hour to
read Poisson's papers on electricity and magnetism ("as I am
pleased with him today"), swimming and engaging in "aquatic
experiments," making a centrifugal pump, reading Herodotus,
designing regular geometric figures, working on an electric
telegraph, recording thermometer and barometer readings,
embedding a beetle in wax to see if it was a good conductor of
electricity ("not at all cruel, because I slew him ir. boiling
water in which he never kicked"), taking the dogs out, picking
fruit, doing "violent exercise" and solving props. Many of his
letters exhibit his metaphysical leanings, especially an intense
interest in moral philosophy. This bent of his thought, while
showing no particular originality, reflects his social sympathy,
his Christian earnestness, the not uncommon nineteenth-century
mixture of rationalism and simple faith. It was a period when
men still shared the eighteenth-century belief that questions of
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wisdom, happiness and virtue could be studied as one studies
optics and mechanics.

In 1850 Maxwell quit the University of Edinburgh for
Cambridge. After a term at Peterhouse College he migrated
to Trinity where the opportunity seemed better of obtaining
ultimately a mathematical fellowship. In his second year he
became a private pupil of William Hopkins, considered the
ablest mathematics coach of his time. It was Hopkins's job to
prepare his pupils for the stiff competitive examinations, the
mathematical tripos, in which the attainment of high place
insured academic preferment. Hopkins was not easily im-
pressed; the brightest students begged to join his group, and
the famous physicists George Stokes and William Thomson
(later Lord Kelvin) had been among his pupils. But from the
beginning he recognized the talents of the black-haired young
Scotsman, describing him as "the most extraordinary man I
have ever met," and adding that "it appears impossible for
[him] to think incorrectly on physical subjects." Maxwell
worked hard as an undergraduate, attending the lectures of
Stokes and others and faithfully doing what he called "old
Hop's props." He joined fully in social and intellectual ac-
tivities and was made one of the Apostles, a club limited to
twelve members, which for many years included the outstand-
ing young men at Cambridge. A contemporary describes him
as "the most genial and amusing of companions, the pro-
pounder of many a strange theory, the composer of many a
poetic jeu d'esprit." Not the least strange of his theories re-
lated to finding an effective economy of work and sleep. He
would sleep from 5 in the afternoon to 9:30, read very hard
from 10 to 2, exercise by running along the corridors and up
and down stairs from 2 to 2:30 A.M. and sleep again from
2:30 to 7. The occupants of the rooms along his track were
not pleased, but Maxwell persisted in his bizarre experiments.
Less disturbing were his investigations of the process by which
a cat lands always on her feet. He demonstrated that a cat
could right herself even when dropped upside down on a table
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or bed from about two inches. A complete record of these valu-
able researches is unfortunately not available.

A severe illness, referred to as a "sort of brain fever,"
seized Maxwell in the summer of 1853. For weeks he was
totally disabled and he felt effects of his illness long after-
ward. Despite the abundance of details about his life, it is hard
to get to the man underneath. From his letters one gleans evi-
dence of deep inner struggles and anxieties, and the attack of
"brain fever" was undoubtedly an emotional crisis; but its
causes remain obscure. All that is known is that his illness
strengthened Maxwell's religious conviction a deep, ear-
nest piety, leaning to Scottish Calvinism yet never c::mpletely
identified with any particular system or sect. "I have Ho nose
for heresy," he used to say.

In January, 1854, with a rug wrapped round his feet and
legs (as his father had advised) to mitigate the perishing cold
in the Cambridge Senate House where the elders met and
examinations were given, he took the tripos. His head was
warm enough. He finished second wrangler, behind the noted
mathematician, Edward Routh. (In another competitive or-
deal, for the "Smith's Prize," where the subjects were more
advanced, Maxwell and Routh tied for first.)

After getting his degree, Maxwell stayed on for a while at
Trinity, taking private pupils, reading Berkeley's Theory of
Vision, which he greatly admired, and Mill's Logic, which he
admired less: ("I take him slowly ... I do not think him the
last of his kind"), and doing experiments on the effects pro-
duced by mixing colors. His apparatus consisted of a top,
which he had designed himself, and color i paper discs that
could be slipped one over the other and arranged round the
top's axis so that any given portion of each color could be
exposed. When the top was spun rapidly, the sectors of the
different colors became indistinguishable and the whole ap-
peared of one uniform tint. He was able to show that suitable
combinations of three primary colors red, green and blue

produced "to a very near degree of approximation" almost
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every color of the spectrum. In each case the required combi-
nation could be quantitatively determined by measuring the
sizes of the exposed sectors of the primary-color discs. Thus,
for example, 66.6 parts of red and 33.4 parts of green gave
the same chromatic effect as 29.1 parts of yellow and 24.1
parts of blue. In general, color composition could be expressed
by an equation of the form

xX = aA -I- bB -f- cC

shorthand for the statement that x parts of X can be matched
by a parts of A, b parts of B and c parts of C. This symbolism
worked out very prettily, for "if the sign of one of the r'anti-
ties, a, b, or c was negative, it simply meant that that color had
to be combined with X to match the other two. "* The problem
of color perception drew Maxwell's attention on and off for
several years, and enlarged his scientific reputation. The work
was one phase of his passionate interest in optics, a subject to
which he made many contributions ranging from papers on
geometrical optics to the invention of an ophthalmoscope and
studies in the "Art of Squinting." Hermann von Helmholtz was
of course the great leader it-. the field of color sensation, but
Maxwell's work was independent and of high merit and in
1860 won him the Rumford Medal of the Royal Society.

These investigations, however, for all their importance,
cannot be counted the most significant activity of the two post-
graduate years at Trinity. For during this same period he was
reading with intense absorption Faraday's Experimental Re-
searches, and the effect of this great record on his mind is
scarcely to be overestimated. He had, as he wrote his father,
been "working away at Electricity again, and [I] have been
working my way into the views of heavy German writers. It

Glazebrook, op. cit., pp. 101.102. See also Maxwell's paper, "Experiments on
Colour, as perceived by he Eye, with remarks on ColourBlindness," Transac-
tions ol the Royal Society o/ Edinburgh, vol. XXI, part II; collected in The
Scientific Papers ol James Clerk Maxwell, edited by W. D. Niven, Cambridge,
1890.
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Color wheel is depicted in Max.
well's essay "Experiments in
Colour, as perceived by the Eye,
with remarks on Colourlind-
mess." The wheel is shown at
the top. The apparatus for rotat-
ing it is at the bottom.
(Scientific American)

takes a long time to reduce to order all the notions one gets
from these men, but I hope to see my way through the subject,
and arrive at something intelligible in the way of a theory."
Faraday's wonderful mechanical analogies suited Maxwell
perfectly; they were what he needed to stimulate his own con-
jectures. Like Faraday, he thought more easily in images than
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abstractions: the models came first, the mathematics later. A
Cambridge contemporary said that in their student days,
whenever the subject admitted of it, Maxwell "had recourse
to diagrams, though the rest [of the class] might solve the
question more easily by a train of analysis." It was his aim,
he wrote, to take Faraday's ideas and to show how "the con-
nexion of the very different orders of phenomena which he
had discovered may be clearly placed before the mathematical
mind. "* Before the year 1855 was out, Maxwell had pub-
lished his first major contribution to electrical science, the
beautiful paper "On Faraday's Lines of Force," to which I
shall return when considering his over-all achievements in the
field.

Trinity elected Maxwell to a fellowship in 1855, and he
began to lecture in hydrostatics and optics. But his father's
health, unsettled for some time, now deteriorated further, and
it was partly to avoid their being separated that he became a
candidate for the chair of natural philosophy at Marischal
College, Aberdeen. In 1856 his appointment was announced;
his father, however, had died a few days before, an irrepar-
able personal loss to Maxwell. They had been as close as
father and son could be. They confided in each other, under-
stood each other and were in certain admirable traits much
alike.

The four years at Aberdeen were years of preparation as
well as achievement. Management of his estate, the design of

The following quotation from the preface to Maxwell's Treatise on Electricity
and Magnetism (Cambridge, 1873) gives Maxwell's views of Faraday in his own
words: "Before I began the study of electricity I resolved to read no mathe
matics on the subject till I had first read through Faraday's Experimental Re.
searches in Electricity. I was aware that there was nu p posed to be a difference
between Faraday's way of conceiving phenomena and that of the mathematicians
so that neither he nor they were satisfied with each other's language. I had also
the conviction that this discrepancy did not arise from either party being wrong.
. As I proceeded with the study of Faraday, I perceived that his method of
conceiving the phenomena was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols. I also found that these
methods were capable of being expressed in the ordinary mathematical forms,
and these compared with those of the professed mathematicians."
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a new "compendious" color machine, and the reading of
metaphysics drew on his time. The teaching load was rather
ligid, a circumstance not unduly distressing to Maxwell. He took
his duties seriously, prepared lectures and demonstration ex-
periments very carefully, but it cannot be said he was a great
teacher. At Cambridge, where he had picked students, his
lectures were well attended, but with classes that were, in his
own words, "not bright," he found it difficult to hit a suitable
pace. He was unable himself to heed the advi,:c he once gave
a friend whose duty it was to preach to a country cc ngregation:
"Why don't you give it to them thinner?"* Electric.0 studies
occupied him both during term and in vacation at c'ilenlair.
"I have proved," he wrote in a semijocular vein to-his friend
C. J. Monro, "that if there be nine coefficients of magnetic
induction, perpetual motion will set in, and a small crystalline
sphere will inevitably destroy the universe by increasing all
velocities till the friction brings all nature into a state of
incandescence. . . ."

Then suddenly the work on electricity was interrupted by a
task that engrossed him for almost two years. In competition
for the Adams prize of the University of Cambridge (named
in honor of the discoverer of Neptune), Maxwell prepared a
brilliant essay on the subject set by the electors: "The Struc-
ture of Saturn's Rings."

Beginning with Galileo, the leading astronomers had ob-
served and attempted to explain the nature of the several con-
centric dark and bright rings encircling the planet Saturn.
The great Huygens had studied the problem. as had the
Frenchman, Jean Dominique Cassini, Sir William Herschel
and his son John, Laplace, and the Harvard mathematician
and astronomer Benjamin Peirce. The main question at the
time Maxwell entered the competition concerned the stability
of the ring, system : Were the rings solid? Were they fluid?

Occasionally he enjoyed mystifying his students, but at Aberdeen, where, he
wrote Campbell, "No jokes of any kind are understood," he did net permit him.
self such innocent enjoyments.
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Did they consist of masses of matter "not mutually coherent"?
The problem was to demonstrate which type of structure ade-
quately explained the motion and permanence of the rings.

Maxwell's sixty-eight-page essay was a mixture of common
sense, subtle mathematical reasoning and profound insight
into the principles of mechanics.* There was no point, he said
at the outset, in imagining that the motion of the rings was the
result of forces unfamiliar to us. We must assume that gravi-
tation is the regulating principle and reason accordingly. The
hypothesis that the rings are solid and uniform he quickly
demonstrated to be untenable; indeed Laplace had already
shown that an arrangement of this kind would be so precarious
that even a slight displacement of the center of the ring from
the center of the planet "would originate a motion which would
never be checked, and would inevitably precipitate the ring
upon the planet. . . ."

Suppose the rings were not uniform, but loaded or thick-
ened on the circumference a hypothesis for which there ap-
peared to be observational evidence. A mechanically stable
system along these lines was theoretically possible; yet here
too, as Maxwell proved mathematically, the delicate adjust-
ment and distribution of mass required could not survive the
most minor perturbations. What of the fluid hypothesis? To be
sure, in this circumstance the rings would not collide with the
planet. On the other hand, by the principles of fluid motion it
can be proved that waves would be set up in the moving rings.
Using methods devised by the French mathematician Joseph
Fourier for studying heat conduction, by means of which
complex wave motions can be resolved into their simple har-
monic, sine-cosine elements, Maxwell succeeded in demon-
strating that the waves of one ring will force waves in another
and that, in due time, since the wave amplitudes will increase

A summary of the work was published in the Proceedings of the Royal Sod.
ety of Edinburgh, vol. IV; this summary and the essay "On the Stability of the
Motion of Saturn's Rings" appear in the Scientific Papers (op. cit.).
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Mechanical model is depicted here in Figures 7 and 8 of this page from
Maxwell's essay "On the Stability of the Motion of Saturn's Rings." In this
essay, Maxwell demonsttated that the rings were neither liquid nor solid, but
composed of particles. (Scientific American)



indefinitely, the rings will break up into drops. Thus the con-
tinuous-fluid ring is no better a solution of the problem than e e
solid one.

The third possibi'ity remained, that the rings consist of
disconnected particles, either solid or liquid, but necessarily
independent. Drawing on the mathematical theory of rings,
Maxwell proved that such an arrangement is fairly stable and
its disintegration very slow; that the particles may be disposed
in a series of narrow rings or may move through each other
irregularly. He called this solution his "dusky ring, which is
something like the state of the air supposing the siege of
Sebastopol conducted from a forest of guns 100 miles one
way, and 30,000 miles from the other, and the shot never to
stop, but go spinning away around a circle, radius 170,000
miles. . . ."

Besides the mathematical demonstration, Maxwell devised
an elegantly ingenious model to exhibit the motions of the
satellites in a disturbed ring, "for the edification of sensible
imageworshippers." His essay which Sir George Airy, the
Astronomer Royal, described as one of the most remarkable
applications of mathematics he had ever seen won the prize
and established him as a leader among mathematical physicists.

In 1859 Maxwell read before the British Association his
paper "Illustrations of the Dynamical Theory of Gases. "*
This marked his entry into a branch of physics that he en
riched almost as much as he did the science of electricity. Two
circumstances excited his interest in the kinetic theory of gases.
The first was the research on Saturn, when he encountered the
mathematical problem of handling the irregular motions of
the particles in the rings irregular but resulting nonetheless
in apparent regularity and uniformity a problem analo-
gous to that of the behavior of the particles of gas. The second
was the publication by the German -physicist Rudolf Clausius

Philosophical Magazine, January and July, 1860: also Maxwell's Scientific
Papers, op. cit.
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of two famous memoirs: on the heat produced by molecular
motion and on the average length of the path a gas molecule
travels before colliding with a neighbor.

Maxwell's predecessors in this field Daniel Bernoulli,
James Joule, Clausius, among others had been successful
in explaining many of the properties of gases, such as pres-
sure, temperature, and density, on the hypothesis that a gas is
composed of swiftly moving particles. However, in order to
simplify the mathematical analysis of the behavior of enor-
mous aggregates of particles, it was thought necessary to make
an altogether implausible auxiliary assumption, namely, that
all the particles of a gas moved at ti a same speed. The gifted
British physicist J. J. Waterson alone rejected this assumption,
in a manuscript communicated to the Royal Society in 1845:
he argued cogently that various collisions among the molecules
must produce different velocities and that the gas temperature
is proportional to the square of the velocities of all the mole-
cules. But his manuscript lay forgotten for half a century in
the archives of the Society.

Maxwell, without knowledge of Waterson's work; arrived at
the same conclusions. He realized that further progress in the
science of gases was not to be cheaply won. If the subject was
to be developed on "strict mechanical principles" and for
him this rigorous procedure was essential it was necessary,
he said, not only to concede what was in any case obvious, that
the particles as a result of collisions have different speeds, but
to incorporate this fact into the mathematical formulation of
the laws of motion of the particles.

Now, to describe how two spheres behave on colliding is
hard enough; Maxwell analyzed this event, but only as a prel-
ude to the examination of an enormously more complex phe-
nomenon the behavior of an "indefinite number of small,
hard and perfectly elastic spheres acting on one another only
during impact. "* The reason for this mathematical investiga-

"Illustrations of the Dynamical Theory of Gases," op. cit.
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tion was clear. For as he pointed out, if the properties of this
assemblage are found to correspond to those of molecular
assemblages of gases, "an important physical analogy will be
established, which may lead to more accurate knowledge of
the properties of matter."

The mathematical methods were to hand but had hitherto
not been applied to the problem. Since the many molecules
cannot be treated individually, Maxwell introduced the statis-
tical method for dealing with the assemblage. This marked a
great forward step in the study of gases. A fundamental Max-
wellian innovation was to regard the molecules as falling into
groups, each group moving within a certain range of velocity.
The groups lose members and gain them, but group population
is apt to remain pretty steady. Of course the groups differ in
size; the largest, as Maxwell concluded, possesses the most
probable velocity, the smaller groups the less probable. In
other words, the velocities of the molecules in a gas can be
conceived as distributed in a pattern the famous bell-shaped
frequency curve discovered by Gauss, which applies to so
many phenomena from observational errors and distribution
of shots on a target to groupings of men based on height and
weight, and the longevity of electric light bulbs. Thus while
the velocity of an individual molecule might elude description,
the velocity of a crowd of molecules would not. Because this
method afforded knowledge not only of the velocity of a body
of gas as a whole, but also of the groups of differing velocities
composing it, Maxwell was now able to derive a precise formula
for gas pressure. Curiously enough this expression did not
differ from that based on the assumption that the velocity of
all the molecules is the same, but at last the right conclusions
had been won by correct reasoning. Moreover the generality
and elegance of Maxwell's mathematical methods led to the
extension of their use into almost every branch of physics.

Maxwell went on, in this same paper, to consider another
factor that needed to be determined, namely, the average
number of collisions of each molecule per unit of time, and its
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mean free path ( i.e., how far it travels, on the average, be-
tween collisions). These data were essential to accurate formu-
lations of the laws of gases. He reasoned that the most direct
method of computing the path depended upon the viscosity of
the gas. This is the internal friction that occurs when (in Max-
well's words) "different strata of gas slide upon one another
with different velocities and thus act upon one another with a
tangential force tending to prevent this sliding, and similar in
its results to the friction between two solid surfaces sliding
over each other in the 'same way." According to Maxwell's
hypothesis, the viscosity can be explained as a statistical con-
sequence of innumerable collisions between the molecules and
the resulting exchange of momentum. A very pretty illustra-
tion by the Scotch physicist Balfour Stewart helps to an under-
standing of what is involved. Imagine two trains running with
uniform speed in opposite directions on parallel tracks close
together. Suppose the passengers start to jump across from one
train to the other. Each passenger carries with him a momen-
tum opposite to that of the train onto which he jumps; the
result is that the velocity of both trains is slowed just as if
there were friction between them. A similar process, said
Maxwell, accounts for the apparent viscosity of gases.

Having explained this phenomenon, Maxwell was now able
to show its relationship to the mean free path of the molecules.
Imagine two layers of molecules sliding past each other. If a
molecule passing from pne layer to the other travels only a
short distance before colliding with another molecule, the two
particles do not exchange much momentum, because near the
boundary or interface the friction and difference of. velocity
between the two layers is small. But if the molecule penetrates
deep into the other layer before a collision, the friction and
velocity differential will be greater; hence the exchange of
momentum between the colliding particles will be greater.
This amounts to saying that in any gas with high viscosity the
molecules must have a long mean free path.

Maxwell deduced further the paradoxical and fundamental
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fact that the viscosity of gas is independent of its density. The
reason is that a particle entering a dense i.e., highly crowded

gas will not travel far before colliding with another par-
ticle; but penetration on the average will be deeper when the
gas entered is only thinly populated, because the chance of a
collision is smaller. On the other hand, there will be more
collisions in a dense than in a less dense gas. On balance, then,
the momentum conveyed across each unit area per second re-
mains the same regardless of density, and so the coefficient of
viscosity is not altered by varying the density.

These results, coupled with others arrived at in the same
paper, made it possible for Maxwell to picture a mechanical
model of phenomena and relationships hitherto imperfectly
understood. The various properties of a gas diffusion, vis-
cosity, heat conduction could now be explained in precise
quantitative terms. All are shown to be connected with the
motion of crowds of particles "carrying with them their mo-
menta and their energy," traveling certain distances, colliding,
changing their motion, resuming their travels, and so on. Alto-
gether it was a scientific achievement of the first rank. The
reasoning has since been criticized on the ground, for exam-
ple, that molecules do not possess the tiny-billiard-ball prop-
erties Maxwell ascribed to them; that they are neither hard,
nor perfectly elastic; that their interaction is not confined
to the actual moment of impact. Yet despite the inadequacies
of the model and the errors of reasoning, the results that, as
Sir James Jeans has said, "ought to have been hopelessly
wrong," turned out to be exactly right, and the formula tying
the relationships together is in use to this day, known as Max-
well's law.*

"Maxwell, by a train of argument which seems to bear no relation at all to
molecules, or to the dynamics of their movements, or to logic, or even to ordi.
nary common sense, reached a formula which, according to all precedents and
all the rules of scientific philosophy ought to have been hopelessly wrong. In
actual fact it was subsequently shown to be exactly right.. .." (James Jeans,
"Clerk Mtxwell's Method," in James Clerk Maxwell, A Commemoration Vol-
ume, 1831.1931, New York, 1931.)
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This is perhaps a suitable place to add a few lines about
Maxwell's later work in the theory of gases. Clausius, Max
Planck tells us, was not profoundly impressed by the law of
distribution of velocities, but the German physicist Ludwig
Boltzmann at once recognized its significance. He set to work
refining and generalizing Maxwell's proof and succeeded,
among other results, in showing that "not only does the Max-
well distribution [of velocities] remain stationary, once it is
attained, but that it is the only possible equilibrium state, since
any system will eventually attain it, whatever its initial state. "*
This final equilibrium state; as b,h men realized, is the ther-
modynamic condition of maximum entropy the most dis-
ordered state, in which the least amount of energy is available
for useful work. But since this condition is-in the long run also
the most probable, purely from the mathematical standpoint,
one of the great links had been forged in modern science be-
tween the statistical law of averages and the kinetic theory of
matter.

The concept of entropy led Maxwell to one of the celebrated
images of modern science, namely, that of the sorting demon.
Statistical laws, such as the kinetic theory of gases, are good
enough in their way, and, at any rate, are the best man can
arrive at, considering his limited powers of observations and
understanding. Increasing entropy, in other words, is the ex-
planation we are driven to and indeed our fate in physical
reality because we are not very bright. But a demon more
favorably endowed could sort out the slow- and fast-moving
particles of a gas, thereby changing disorder into order and
converting unavailable into available energy. Maxwell imag-
ined one of these small, sharp fellows "in charge of a friction.
less, sliding door in a wall separating two compartments of a
vessel filled with gas. When a fast-moving molecule moves
from left to right the demon opens the door, when a slow mov-
ing molecule approaches, he (or she) closes the door. The

Max Planck, "Maxwell's Influence on Theoretical Physics in Germany," in
James Jeans, ibid.

125

I



fast-moving molecules accumulate in the right-hand compart-
ment, and slow ones in the left. The gas in the first compart-
ment grows hot and that in the second cold." Thus the demon
would thwart the second law of thermodynamics. Living or-
ganisms, it has been suggested, achieve an analogous success;
as Erwin Schrodinger has phrased it, they suck negative en-
tropy from the environment in the food they eat and the air
they breathe.

Maxwell and Boltzmann, working independently and in a
friendly rivalry, at first made notable progress in explaining
the behavior of gases by statistical mechanics. After a time,
however, formidable difficulties arose, which neither investi-
gator was able to overcome. For example, they were unable to
write accurate theoretical formulas for the specific heats of
certain gases (the quantity of heat required to impart a unit
increase in temperature to a unit mass of the gas at constant
pressure and volume).* The existing mathematical techniques
simply did not reach and a profound transformation of
ideas had to take place before physics could rise to a new
level of understanding. Quantum theory the far-reaching

In order to resolve discrepancies between theory and experiment, as to the
viscosity of gases and its relationship to absolute temperature, Maxwell sug-
gested a new model of gas behavior, in which the molecules are no longer con-
sidered as elastic spheres of definite radius but as more or less undefined bodies
repelling one another inversely as the fifth power of the distance between the
centers of gravity. By this trick he hoped to explain observed properties of
gases and to bypass mathematical obstacles connected with computing the veloc-
ity of a gas not in a steady state. For, whereas in the case of hard elastic bodies
molecular collisions are a discontinuous process (each molecule retaining its
velocity until the moment of impact) and the computation of the distribution
of velocities is essential in solving questions of viscosity, if the molecular inter
action is by repulsive force, acting very weakly when the molecules are far away
from each other and strongly when they approach closely, each collision may be
conceived as a -apid but continuous transition from the initial to the final veloc-
ity, and the computation both of relative velocities of the colliding molecules
and of the velocity distribution of the gas as a whole can be dispensed with. In
his famous memoir On the Dynamical Theory of Gases, which appeared in 1866,
Maxwell gave a beautiful mathematical account of the properties of such a sys-
tem. The memoir inspired Boltzmann to a Wagnerian rapture. lie compared
Maxwell's theory to a musical drama: "At first are developed majestically the
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system of thought revolving about Planck's universal constant,
h was needed to deal with the phenomena broached by
Maxwell and Boltzmann.* The behavior of microscopic par-
ticles eluded description by classical methods, classical con-
cepts of mass, energy and the like; a finer mesh of imagination
alone would serve in the small world of the atom. But neither
quantum theory, nor relativity, nor the other modes of thought
constituting the twentieth-century revolution in physics would
have been possible had it not been for the brilliant labors of
these natural philosophers in applying statistical methods to
the study of gases.

Variations of the Velocities, then from one side enter the Equations of State,
from the other the Equations of Motion in a Central Field; ever higher swoops
the chaos of Formulae; suddenly are heard the four words: 'Put n = 5'. The
evil spirit V (the relative velocity of two molecules) vanishes and the dominat-
ing figure in the bass is suddenly silent; that which had seemed insuperable
being overcome as if by a magic stroke .. . result after result is given by the
pliant formula till, as unexpected climax, comes the Heat Equilibrium of a
heavy gas; the curtain then drops."

Unfortunately, however, the descent of the curtain did not, as Boltzmann had
supposed, mark a happy ending. For as James Jeans points out, "Maxwell's be-
lief that the viscosity of an actual gas varied directly as the absolute tempera-
ture proved to have been based on faulty arithmetic, and the conclusions he
drew from his belief were vitiated by faulty algebra." [Jeans, op. cit.] It was,
says Jeans, "a very human failing, which many of us will welcome as a bond of
union between ourselves and a really great mathematician" even though the
results were disastrous.

Explanation of the discrepancies they found had to await the development of
quantum theory, which showed that the spin and vibration of molecules were
restricted to certain values.



Throughout history, there have been men who endeavored
to design machines that produce energy from nothing.
All their efforts have been thwarted by the law of con-
servation of energy. But why not a machine that ex-
tracts unlimited energy by cooling its surroundings?
Unless Maxwell's Demon intervenes, this machine is
highly improbable.

11 Maxwell's Demon

George Gamow

1965
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I've read something somewhere about such hypothetical
machinesperpetual motion machines, I believe they are called;
said Mr Tompkins. `If I remember correctly, machines planned
to run without fuel are considered impossible because one cannot
manufacture energy out of nothing. Anyway, such machines
have no connection with gambling.'

You are quite right, my boy,' agreed the professor, pleased
that his son-in-law knew something at least about physics. This
kind of perpetual motion, "perpetual motion machines of the first
type" as they are called, cannot exist because they would be con-
trary to the law of the Conservation of Energy. However the
fuel-less machines I have in mind are of a rather different type and
are usually known as "perpetual motion machines of the second
type". They are not designed to create energy out of nothing, but
to extract energy from surrounding heat reservoirs in the earth,
sea or air. For instance, you can imagine a steamship in whose
boilers steam was gotten up, not by burning coal but by extract-
ing heat from the surrounding water. In fact, if it were possible to
force heat to flow away from cold toward greater heat, instead of
the other way round, one could construct a system for pumping in
sea-water, depriving it of its heat content, and disposing of the
residue blocks of ice overboard. When a gallon of cold water
freezes into ice, it gives off enough heat to raise another gallon of
cold water almost to the boiling point. By pumping through
several gallons of sea-water per minute, one could easily collect
enough heat to run a good-sized engine. For all practical purposes,
such a perpetual motion machine of the second type would be just
as good as the kind designed to create energy out of nothing.
With engines like this to do the work, everyone in the world could

129



live as carefree an existence as a man with an unbeatable roulette
system. Unfortunately they are equally impossible as they both
:oiate the laws of probability in the same way.'

`I admit that trying to extract heat out of sea-water to raise
steam in a ship's boilers is a crazy idea,' said Mr Tompkins. ' How-
ever, I fail to see any connexion between that problem and the
laws of chance. Surely, you are not suggesting that dice and
roulette wheels should be used as moving parts in these fuel-less
machines. Or are you?'

`Of course not!' laughed the professor. 'At least I don't believe
even the craziest perpetual motion inventor has made thatsugges-
tion yet. The point is that heat processes themselves are very
similar in their nature to games of dice, and to hope that heat will
flow from the colder body into the hotter one is like hoping that
money will flow from the casino's bank into your pocket.'

' You mean that the bank is cold and my pocket hot?' asked
Mr Tompkins, by now completely befuddled.

`In a way, yes,' answered the professor. `If you hadn't missed
my lecture last week, you would know that heat is nothing but the
rapid irregular movement of innumerable particles, known as
atoms and molecules, of which all material bodies are constituted.
The more violent this molecular motion is, the warmer the body
appears to us. As this molecular motion is quite irregular, it is
subject to the laws of chance, and it is easy to show that the most
probable state of a system made up of a large number of particles
will correspond to a more or less uniform distribution among all
of them of the total available energy. If one part of the material
body is heated, that is if the molecules in this region begin to move
faster, one would expect that, through a large number of acciden-
tal collisions, this excess energy would soon be distributed evenly
among all the remaining particles. However, as the collisions are
purely accidental, there is also the possibility that, merely by
chance, a certain group of particles may collect the larger part of
the available energy at the expense of the others. This spon-
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taneous concentration of thermal energy in one particular part of
the body would correspond to the flow of heat against the tem-
perature gradient, and is not excluded in principle. However, if
one tries to calculate the relative probability of such a spontaneous
heat concentration occurring, one gets such small numerical
values that the phenomenon can be labelled as practically
impossible.'

Oh, I see it now,' said Mr Tompkins. `You mean that these
perpetual motion machines of the second kind might work once in
a while but that the chances of that happening are as slight as they
are of throwing a seven a hundred times in a row in a dice game.'

'The odds are much smaller than that,' said the professor. In
fact, the probabilities of gambling successfully against nature are
so slight that it is difficult to find words to describe them. For
instance, I can work out the chances of all the air in this room col-
lecting spontaneously under the table, leaving an absolute vacuum
everywhere else. The number of dice you would throw at one
time would be equivalent to the number of air molecules in the
room, so I must know how many there are. One cubic centimetre
of air at atmospheric pressure, I remember, contains a number of
molecules dcscribed by a figure of twenty digits, so the air
molecules in the whole room must total a number with some
twenty-seven digits. The space under the table is about one per
cent of the volume of the room, and the chances of any given mole-
cule being under the table and not somewhere else are, therefore,
one in a hundred. So, to work out the chances of all of them being
under the table at once, I must multiply one hundredth by one
hundredth and so on, for each molecule in the room. My result
will be a decimal beginning with fifty-four noughts.'

Phew . . . !' sighed Mr Tompkins, I certainly wouldn't bet on
those odds! But doesn't all this mean that deviations from equi-
partition are simply impossible?'

Yes,' agreed the professor. You can take it as a fact that we
won't suffocate because all the air is under the table, and for that
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matter that the liquid won't start boiling by itself in your high-ball
glass. But if you consider much smaller areas, containing much
smaller numbers of our dice-molecules, deviations from statistical
distribution become much more probable. In thisvery room, for
instance, air molecules habitually group themselves somewhat
more densely at certain points, giving rise to minute inhomc-
geneities, called statistical fluctuations of density. When the sun's
light passes through terrestrial atmosphere, such inhomogeneities
cause the scattering of the blue rays of spectrum, and give to the
sky its familiar colour. Were these fluctuations of density not
present, the sky would always be quite black, and the stars would
be clearly visible in full daylight. Also the slightly opalescent light
liquids get when they are raised close to the boiling point is
explained by these same fluctuations of density produced by the
irregularity of molecular motion. But, on a large scale, such
fluctuations are so extremely improbable that we would watch for
billions of years without seeing one.'

' But there is still a chance of the unusual happening right now
in this very room,' insisted Mr Tompkins. 'Isn't there?'

' Yes, of course there is, and it would be unreasonable to insist
that a bowl of soup couldn't spill itself all over the table cloth
because half of its molecules had accidentally received thermal
velocities in the same direction.'

`Why that very thing happened only yesterday,' chimed in
Maud, taking an interest now she had finished her magazine. ' The
soup spilled and the maid said she hadn't even touched the table.'

The professor chuckled. 'In this particular case,' he said,
`I suspect the maid, rather than Maxwell's Demon, was to blame.'

`Maxwell's Demon?' repeated Mr Tompkins, surprised.
`I should think scientists would be the last people to get notions
about demons and such.'

' Well, we don't take him very seriously,' said the professor.
`CLERK MAXWELL, the famous physicist, was responsible for
introducing the notion of such a statistical demon simply as a
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figure of speech. He used this notion to illustrate discussions on
the phenomena of heat. Maxwell's Demon is supposed to be
rather a fast fellow, and capable of changing the direction of every
single molecule in any way you prescribe. If there really were
such a demon, heat could be made to flow against temperature,
and the fundamental law of thermodynamics, the principle of
increasing entropy, wouldn't be worth a nickel.'

`Entropy?' repeated Mr Tompkins. `I've heard that word
before. One of my colleagues once gave a party, and after a few
drinks, some chemistry students he'd invited started singing

'Increases, decreases
Decreases, increases
What the hell do we care
What entropy does?'

to the tune of "Ach du lieber Augustine". What is entropy
anyway?'

`It's not difficult to explain. " Entropy" is simply a term used to
describe the degree of disorder of molecular motion in any given
physical body or system of bodies. The numerous irregular col-
lisions between the molecules tend always to increase the entropy,
as an absolute disorder is the most probable state of any statistical
ensemble. However, if Maxwell's Demon could be put to work,
he would soon put some order into the movement of the molecules
the way a good sheep dog rounds up and steers a flock of sheep,
and the entropy would begin to decrease. I should also tell you
that according to the so-called H-theorem Ludwig Boltzmann
introduced to science. .

Apparently forgetting he was talking to a man who knew prac-
tically nothing about physics and not to a class of advanced
students, the professor rambled on, using such monstrous terms as
generalized parameters' and quasi-ergodic systems', thinking he

was making the Jamental laws of thermodynamics and ..eir
relation to Gibbs' form of statistical mechanics crystal clear.
Mr Tompkins was used to his father-in-law talking over his head,
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so he sipped his Scotch and soda philosophically and tried to
look intelligent. But all these highlights of statistical physics
were definitely too much for Maud, curled up in her chair and
struggling to keep her eyes open. To throw off her drowsi-
ness she decided tc and see how dinner was getting along.

`Does madam &sue something?' inquired a tall, elegantly
dressed butler, bowing as she came into the dining room.

' No, just go on with your work,' she said, wondering why on
earth he was there. It seemed particularly odd as they had never
had a butler and certainly could not afford one. The man was tall
and lean with an olive skin, long, pointed nose, and greenish eyes
which seemed to burn with a strange, intense glow. Shivers ran
up and down Maud's spine when she noticed the two symmetrical
lumps half hidden by the black hair above his forehead.

`Either I'm dreaming,' she thought, `or this is Mephistopheles
himself, straight out of grand opera.'

' Did my husband hire you?' she asked aloud, just for some-
thing to say.

' Not exactly,' answered the strange butler, giving a last artistic
touch to the dinner table. 'As a matter of fact, I came here of my
own accord to show your distinguished father I am not the myth
he believes me to be. Allow me to introduce myself. I am
Maxwell's Demon.'

' Oh 1' breathed Maud with relief, ' Then you probably aren't
wicked, like other demons, and have no intention of hurting
anybody.' .

`Of course not,' said the Demon with a broad smile, `but I like
o play practical jokes and I'm about to play one on your father.'

' What are you going to do?' asked Maud, still not quite
eassured.

`Just show him that, if I choose, the law of increasing entropy
can be broken. And to convince you it can be done, I would
appreciate the honour of your company. It is not at all dangerous,
I assure you.'
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zing by in all directions, 'Jut Maxwell's Demon cleverly kept them
from colliding with any of the dangerous looking things. Look-
ing down, Maud saw what looked like a fishing boat, heaped to the
gunwales with quivering, glistening fish. They were not fish,
however, but a countless number of foggy balls, very like those
flying past them in the air. The Demon led her closer until she
seemed surrounded by a sea of coarse gruel which was moving
and working in a patternless way. Balls were boiling to the surface
and - others seemed to be sucked down. Occasionally one would
come to the surface with such speed it would tear off into space, or
one of the balls flying through the air would dive into the gruel
and disappear under thousands of other balls. Looking at the
gruel more closely, Maud discovered that the balls were really of
two different kinds. If most looked like tennis balls, the larger
and more elongated ones were shaped more like American foot-
balls. All of them were semi-transparent and seemed to have a
complicated internal structure which Maud could not make out.

`Where are we?' gasped Maud. 'Is this what hell looks like?'
' No,' smiled the Demon, ' Nothing as fantastic as that. We are

simply taking a close look at a very small portion of the liquid
surface of the highball which is succeeding in keeping your
husband awake while your father expounds quasi-ergodic systems.
All these balls are molecules. The smaller round ones are water
molecules and the larger, longer ones are molecules of alcohol. If
you care to work out the proportion between their number, you can
find out just how strong a drink your husband poured himself.'

' Very interesting,' said Maud, as sternly as she dared. `But
what are those things over there that look like a couple of whales
playing in the water. They couldn't be atomic whales, or could
they?'

.

The demon looked where Maud pointed. ' No, they are hardly
whales,' he said. 'As a matter of fact, they are a couple of very fine
fragments of burned barley, the ingredient which gives whisky its
particular flavour and colour. Each fragment is made up of
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millions and millions of complex organic molecules and is com-
paratively large and heavy. You see them bouncing around be-
cause of the action of impacts they receive from the water and
alcohol molecules animated by thermal motion. It was the study
of such intermediate-sized particles, small enough to be influenced
by molecular motion but still large enough to be seen through a
strong microscope, which gave scientists their first direct proof of
the kinetic theory of heat. By measuring the intensity of the
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tarantella-like dance executed by such minute particles suspended
in liquids, their Brownian motion as it is usually called, physicists
were able to get direct information on the energy of molecular
motion.'

Again the Demon guided her through the air until they came to
an enormous wall made of numberless water molecules fitted
neatly and closely together like bricks.

' How very impressive!' cried Maud. ' That's just the back-
ground I've been looking for for a portrait I'm painting. What is
this beautiful building, anyway?'

' Why, this is part of an ice crystal, one of many in the ice cube
in your husband's glass,' said the Demon. 'And now, if you will
excuse me, it is time for me to start my practical joke on the old,
self-assured professor.'
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So saying, Maxwell's Demon left Maud perched on the edge of
the ice crystal, like an unhappy mountain climber, and set about
his work. Armed with an instrument like a tennis racquet, he was
swatting the molecules around him. Darting here and there, he
was always in time to swat any stubborn molecule which persisted
in going in the wrong direction. In spite of the apparent danger of
her position, Maud could not help admiring his wonderful speed
and accuracy, and found herself cheering with excitement when-
ever he succeeded in deflecting a particularly fast and difficult
molecule. Compared with the exhibition she was witnessing,
champion tennis players she had seen looked like hopeless duffers.
In a few minutes, the results of the Demon's work were quite
apparent. Now, although one part of the liquid surface was
covered by very slowly moving, quiet molecules, the part directly
under her feet was more furiously agitated than ever. The number
of molecules escaping from the surface in the process of evapora-
tion was increasing rapidly. They were now escaping in groups of
thousands together, tearing through the surface as giant bubbles.
Then a cloud of steam covered Maud's whole field of vision and
she could get only occasional glimpies of the whizzing racquet or
the tail of the Demon's dress suit among the masses of maddened
molecules. Finally the molecules in her ice crystal perch gave way
and she fell into the heavy clouds of vapour beneath .. ..

When the clouds cleared, Maud found herself sitting in the
same chair she was sitting in befcire she went into the dining room.

' Holy entropy!' her father shouted, staring bewildered at
Mr Tompkins' highball. `It's boiling!'

The liquid in the glass was covered with violently bursting
bubbles, and a thin cloud of steam was rising slowly toward the
ceiling. It was particularly odd, however, that the drink was
boiling only in a comparatively small area around the ice cube.
The rest of the drink was still quite cold.

' Think of it!' went on the professor in an awed, trembling
voice. ' Here I was telling you about statistical fluctuations in the
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law of entropy when we actually see one! By some incredible
chance, possibly for the first time since the earth began, the faster
molecules have all grouped themselves accidentally on one part of
the surface of the water and the water has begun to boil by itself!

'Holy entropy! It's boiling!'

In the billions of years to come, we will still, probably, be the only
people who ever had the chance to observe this extraordinary
phenomenon.' He watched the drink, which was now slowly
cooling down. ' What a stroke of luck !' he breathed happily.

Maud smiled but said nothing. She did not care to argue with
her father, but this time she felt sure she knew better than he.
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12 Randomness and The Twentieth Century

Alfred M. Bork

19 67

As I write this I have in front of me a book that may be un-
familiar to many. It is entitled One Million Random Digits with
r,000 Normal Deviates and was produced by the Rand Corporation
in 1955. As the title suggests, each page contains digitsnumbers
from 1 to 9arranged as nearly as possible in a completely random
fashion. An electronic roulette wheel generated the numbers in this
book, and afterwards the numbers were made even more random by
shuffling and other methods. There is a careful mathematical defini-
tion of randomness, and associated with it are many tests that one
can apply. These numbers were shuffled until they satisfied the tests.

I want to use this book as a beginning theme for this paper. The
production of such a book is entirely of the twentieth century. It
could not have been produced in any other era. I do not mean to
stress that the mechanism for doing it was not available, although
that is also true. What is of more interest is that before the twentieth-
century no one would even have thought of the possibility of pro-
ducing a book like this; no one would have seen any use for it.
A rational nineteenth-century man would have thought it the height
of folly to produce a book containing only random numbers. Yet
such a book is important, even though it is not on any of the usual
lists of one hundred great books.
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That this book is strictly of the twentieth century is in itself of
importance. I claim that it indicates a cardinal feature of our cen-
tury: randomness, a feature permeating many different and appar-
ently unrelated aspects of our culture. I do not claim that randomness
is the only feature which characterizes and separates twentieth-
century thought from earlier thought, or even that it is dominant,
but I will argue, admittedly on a speculative basis, that it is an
important aspect of the twentieth century.

Before I leave the book referred to above, you may be curious
to know why a collection of random numbers is of any use. The
Rand Corporation, a government-financed organization, is not likely
to spend its money on pursuits having no possible application. The
principal use today of a table of random numbers is in a calcula-
tional method commonly used on large digital computers. Because
of its use of random numbers, it is called the Monte Carlo method,
and it was developed primarily by Fermi, von Neumann, and Ulam
at the end of the Second World War. The basic idea of the Monte
Carlo method is to replace an exact problem which cannot be solved
with a probabilistic one which can be approximated. Another area
where a table of random numbers is of importance is in designing
experiments, particularly those involving sampling. If one wants,
for example, to investigate certain properties of wheat grown in a
field, then one wants thoroughly random samplings of wheat; if all
the samples came from one corner of the field, the properties found
might be peculiar to that corner rather than to the whole field.
Random sampling is critical in a wide variety of situations.

Actually, few computer calculations today use a table of random
numbers; rather, a procedure suggested during the early days o:
computer development by John von Neumann is usually followed.
Von Neumann's idea was to have the computer generate its own
random numbers. In a sense numbers generated in this way are not
"random," but they can be made to satisfy the same exacting tests
applied to the Rand Table; randomness is a matter of degree. It is
more generally convenient to let the computer produce random
numbers than to store in the computer memory a table such as the
Rand Table. Individual computer centers often have their own
methods for generating random numbers.

I shall not give any careful definition of randomness, but shall
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rely on intuitive ideas of the term. it formal careful definition would
be at odds with our purposes, since, as A. 0. Lovejoy noted in The
Great Chain of Being, it is the vagueness of the terms which allows
them to have a life of their own in a number of different areas. The
careful reader will notice the shifting meanings of the word "ran-
dom," and of related words, in our material.

However, it may be useful to note some of the different ideas
connected with randomness. D. M. Mackay, for example, distin-
guishes between "(a) the notion of well-shuffledness or impartiality
of distribution-; (b) the notion of irrelevance or absence of correla-
tion; (c) the nation of 'I don't care'; and (d) the notion of chaos'
Although this is not a complete, mutually exclusive classification
the editor of the volume in which it appears objects to itthe classi-
fication indicates the range of meaning that "random" has even
in well-structured areas like information theory.

Let us, then, review the evidence of randomness in several
areas of twentieth-century work, and then speculate on why this
concept has become so pervasive, as compared with the limited use
of randomness in the nineteenth century.

I begin with the evidence for randomness in twentieth-century
physics. There is no need to search far, for the concept helps to
separate our physics from the Newtonian physics of the last few
centuries. Several events early in this century made randomness
prominent in physics. The first was the explanation of Brownian
motion. Brownian movement, the microscopically observed motion
of small suspended particles in a liquid, had been known since the
early i800's. A variety of explanations had been proposed, all un-
satisfactory. But Albert Einstein showed, in one of his three famous,
papers of 1905, that Brownian motion could be understood in
terms of kinetic theory:

. . . it will be shown that according to the molecular-kinetic theory of
heat, bodies of microscopically visible size, suspended in a liquid, will
perform movements of such magnitude that they can be easily observed

11111M,INIM

1Donald M. Mackay, "Theoretical Models of Space PerceptionAppendix,"
in "Aspects of the Theory of Artificial Intelligence," The Proceedings of Me
First International Symposium of Biosimulation, edited by C. A. Muses
(Plenium Press, New York, r962), p. 240.
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in a microscope on account of the molecular motions of heat. It is pos-
sible that the movements to be discussed here are identical with the
so-called "Brownian molecular motion." . . . if the movement discussed
here can actually be observed . . . then classical thermodynamics can no
longer be looked on as applicable with precision to bodies even of di-
mensions distinguishable in a microscope. . . . On the other hand
[if] the prediction of this movement proves to be incorrect, weighty
argument would be provided against the molecular-kinetic theory
of heat?

It is the randomness of the process, often described as a "random
walk," which is the characteristic feature of Brownian motion.

But an even more direct experimental situation focused atten-
tion on randomness. During the last years of the nineteenth century,
physicists suddenly found many new and strange "rays" or "radia-
tions," including those from radioactive substances. A series of ex-
perimental studies on alpba-rays from radioactive elements led
Rutherford to say in 1912 t': at "The agreement between theory and
experiment is excellent and indicates that the alpha particles are
emitted at random and the variations accord with the laws of
propability."8 These radiations were associated with the core of the
atom, the nucleus, so randomness was present in the heart of matter.

One of the two principal physical theories developed in the
past forty years is the theory of atomic structure, quantum mechan-
ics, developed during the period from 1926 to 193o. Wave mechanics,
the form of quantum mechanics suggested by the Austrian physicist
Erivin SchrOdinger, predicted in its original form only the allowable
energy levels and hence the spectroscopic lines for an atom of some
particular element. Later, Max Born and Werner Heisenberg gave
quantum theory a more extensive interpretation, today called the
"Copenhagen Interpretation," which relinquishes the possibility of
predicting exactly the outcome of an individual measurement of an
atomic (or molecular) system. Instead, statistical predictions tell
what, on the average, will happen if the same measurement is per-
formed on a large number of identically prepared systems. Identical

2Albert Einstein, Investigations on the Theory of Brownian Movement, edited
by R. Fiirth, translated by A. A. Cowper (E. P. Dutton, New York).
3E. Rutherford, Radioactive Substances and their Radiations (Cambridge Uni-
versity Press, Cambridge, 1913), p. 191.
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measurements on identically prepared systems, in this view, do not
always give the same result. Statistical ideas had been used in the
nineteenth-century physics, but then it was always assumed that the
basic laws were completely deterministic. Statistical calculations
were made when one lacked complete information or because of
the complexity of the system involved. In the statistical interpre-
tation of quantum mechanics I have just described, however, ran-
domness is not accepted purely for calculational purposes. It is a
fundamental aspect of the basic physical laws themselves. Although
some physicists have resisted this randomness in atomic physics, it
is very commonly maintained. A famous principle in contemporary
quantum mechanics, the "uncertainty principle," is closely related
to this statistical view of the laws governing atomic systems.

These examples illustrate randomness in physics; now we pro-
ceed to other areas. Randomness in art is particularly easy to discuss
because it has been so consistently and tenaciously used. My first
example is from graphic design. For hundreds of years books and
other publications have been "justified" in the margins in order to
have flush right margins in addition to flush left margins. This is
done by hyphenation and by adding small spaces between letters
and words. But recently there is a tendency toward books that are
not "justified"; the right margins end just where they naturally
end, with no attempt to make them even. This is a conscious design
choice. Its effect in books with two columns of print is to randomize
partially the white space between columns of print, instead of
maintaining the usual constant width white strip.

In the fine arts, the random component of assemblages, such
as those of Jean Tinguely, often lies in the use of "junk" in their
composition. The automobile junkyard has proved to be a particu-
larly fruitful source of material, and there is something of a random
selection there. Random modes of organization, such as the scrap-
metal press, have also been used.

In art, as elsewhere, .one can sometimes distinguish two kinds
of randomness, one involving the creative technique and another
exploiting the aesthetic effects of randomness. We see examples of
this second type, called "accident as a compositional principle" by
Rudolf Arnheim, in three woodcuts by Jean Arp, entitled "Placed
According to the Laws of Chance." We would perhaps not have
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understood the artist's intent if we did not have the titles. Arp,
like other contemporary artists, has returned repeatedly to the ex-
ploration of such random arrangements. As James Thrall Soby
says, "There can be no doubt that the occasional miracles of accident
have particular meaning for him.. . . One assumes that he considers
spontaneity a primary asset of art."

An area which has been particularly responsive to the explora-
tion of randomness for aesthetic purposes is "op art." Again the tides
often identify this concept, as in "Random Field" by Wen-Yin Tsai.

Perhaps more common, however, is the former aspect, an
artistic technique by which the artist intentionally employs some
random element. The contemporary school of action painting is
an example. Jackson Pollock often would place his canvas on the
ground and walk above it allowing the paint to fall several feet
from his brush to the canvas. Soby describes it as follows: "Pol-
lock's detractors call his current painting the 'drip' or 'spatter'
school, and it is true that he often spreads large canvases on the floor
and at them flings or dribbles raw pigments of various colors."' With
this method he did not have complete control of just where an
individual bit of paint fellthis depended in a complicated way on
the position of the brush, the velocity of the brush, and the con-
sistency of the paint. Thus this technique had explicit chance ele-
ments, and its results have been compared to Brownian motion.

Similarly, J. R. Rierce, in Symbols, Signals, and Noise, dis-
cussing random elements in art, gives some examples of computer-
generated art. He emphasizes the interplay of "both randomness
and order" in art, using the kaliedoscope as an example.

I will comment even more briefly on music. In Percy Granger's
"Random Round" each instrument has a given theme to play;
the entrances are in sequence, but each player decides for him-
self just when he will enter. Thus each performance is a unique
event, involving random choices. The most famous example of
random musical composition is the work of John Cage. One of
his best known works involves a group of radios on a stage, each

'James Thrall Soby, Arp (Museum of Modern Art, New York, 1958).
lames Thrall Soby, "Jackson Pollock," in The New Art in America (Fred-
erick Praeger, Inc., Greenwich, Conn., 1957).



Randomness and The Twentieth Century

with a person manipulating the controls. They work independently,
each altering things as he wishes, and the particular performance is
further heavily dependent on what programs happen to be playing
on the local radio stations at the time of the performance. There is
no question that Cage furnishes the most extreme example of ex-
ploitation of techniques with a chance component.

Most evidence for randomness in literature is not as clear as
in science, art, or music. The first example is clear, but perhaps
some will not want to call it literature at all. In 1965 two senior
students at Reed College saw some examples of computer-produced
poetry and decided that they could do as well. As their model was
symbolist poetry, they did not attempt rhyme or meter, although
their program might be extended to cover either or both. The com-
puter program is so organized that the resulting poem is based on
a series of random choices. First, the computer chooses randomly
a categorypossibilities are such themes as "sea" or "rocks." The
program then selects (again using a built-in random number gen-
erator) a sentence structure from among twenty possibilities. The
sentence structure coLtains a series of parts of speech. The com-
puter randomly puts words into it, keeping within the previously
chosen vocabulary stored in the computer memory. Because of the
limited memory capacity of the small computer available, only
five words occur in a given thematic and grammatical category.
There are occasionally some interesting products.

Turning from a student effort to a recently available commercial
product, consider the novel Composition I by Marc Saporta, which
comes in a box containing a large number of separate sheets. Each
page concludes with the end of a paragraph. The reader is told to
shuffle the pages before beginning to read. Almost no two readers
will see the pages in the same order, and the ordering is deter-
mined in a random process. For some readers the girl is seduced
before she is married, for other readers after she is married. A
similar process has been used by William Burroughs in The Naked
Lunch and elsewhere, except that in this case the shuffling is done
by the writer himself. Burroughs writes on many separate pieces
of paper and then orders them over and over in different ways
until he is satisfied with the arrangement. He has suggested that
his work can be read in other orders, and ends The Naked Lunch
with an "Atrophied Preface."



P. Mayersburg6 has pointed out elements of chance construction
in several other writers' work. He says of Michel Botor: "Mobile is
constructed around coincidence: coincidence of names, places, signs,
and sounds. . . Coincidence implies the destruction of traditional
chronology. It replaces a pattern of cause and effect with one of
chance and accident." He sees another chance aspect in these writers:
they recognize that they cannot completely control the mind of
the reader.

But can we find examples in the work of more important
writers? The evidence is less direct. While contemporary artists
have openly mentioned their use of randomness, contemporary
writers and critics, with a few exceptions, have seldom been willing
to admit publicly that randomness plays any role in their writing!.
But I will argue that randomness is nevertheless often there, al-
though I am aware of the difficulty of establishing it firmly.

The cubist poets, perhaps becathe of their associations with
artists, did experiment consciously with randomness. The story is
told of how Apollinaire removed all the punctuation from the proofs
of illcools because of typesetting errors, and he continued to use
random organization in his "co w. ersation poems" and in other work.

The "opposite of narration" defines the very quality Apollinaire finally
grasped in following cubism into the experimental work of Delaunay, the
quality he named simultanism. It represents an effort to retain a moment
of experience without sacrificing its logically unrelated variety. In poetry
it also means an effort to neutralize the passage of time involved in the as
of reading. The fragments of a poem are deliberately kept in a random
order to be reassembled in a single instant of consciousness./

It can be argued that James Joyce used random elements in
Ulysses and Finnegan: Wake. Several minor stories at least indicate
that Joyce was not unfriendly toward the use of random input. For
example, when Joyce was dictating to Samuel Beckett, there was a
knock at the door. Joyce said, "Come in," and Beckett wrote down,
'tome in," thinking that it was part of the book. He immediately

°P. Mayersberg, "The Writer as Spaceman," The listener, October 17, 1963,
p. 6o7.

?Roger Shattuck, The Banque, Years (Harcourt, Brace, and Co., New York),
p. 238.
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realized that Joyce had not intended to dictate it; but when he
started to erase it, Joyce insisted that it should stay. And it is
still there in Finnegans Wake, because of a chance occurrence. A
related comment is made by Budgin in James Joyce and the Making
of Ulysses: "... he was a great believer in his luck. What he needed
would come to him."

Proceeding from such stories to Joyce's books, I believe that
there are random elements in the vocabulary itself. It is well known
that much of the vocabulary of Finnegans Wake differs from the
vocabulary of other English-language books. Some of the words are
combinations of other better-known English words, and others are
traceable to exotic sources. I do not think that Joyce constructed
every new word carefully, but rather that he consciously explored
randomly or partially randomly formed words. There is some
slight tradition for this procedure in such works as "Jabberwocky."

Another aspect of Joyce's writing, shared with other works of
contemporary literature, also has some connection with our theme,
although this connection is not generally realized. I refer to the
"stream of consciou zss'' organization. The Victorian novel was
ordered in a linear time sequence; there were occasional flashbacks,
but mostly the ordering of events in the novel was chronological.
The stream of consciousness novel does not follow such an order,
but instead the events are ordered as they might be in the mind of
an individual. This psychological ordering has distinctly random
elements. Finnegans Wake has been interpreted as one night in the
mental life of an individual. I would not claim that our conscious
processes are completely random, but I think it is not impossible to
see some random elements in. them

We mentioned that it has not been customary to admit that
randomness is a factor in contemporary literature. Much of the
critical literature concerning Joyce exemplifies this. But at least one
study sees Joyce as using random components: R. M. Adams' Surface
and Symbolthe Consistency of James Joyce's Ulysses.' Adams
relates the story of the "come in" in Finnegans Wake, and he tells
of Joyce's requesting "any God dam drivel you may remember" of

*R. M. Adams, Surface and SymbolThe Consistency of lames Joyce's Ulysses
(Oxford University Press, New York, 1952).



forces on each other and on the walls of the container. To know
the positions and velocities of a!1 the particles was impossible because
of the multitude of particles; ordinary quantities of gas contained
to" one followed by twenty-four zerosparticles. This lack of
complete information made it necessary to use general properties
such as energy conservation in connection with probability con-
siderations. One could not predict where each particle would be,
but one could predict average behavior and relate this behavior to
observed thermodynamical quantities. Thus statistical thermody-
namics introduced statistical modes of thought to the physicist; but
the underlying laws were still considered to be deterministic.

A fundamental quantity in thermodynamics, entropy, was
found to have a simple statistical interpretation: it was the measure
of the degree of randomness in a collection of particles. Entropy
could be used as the basis of the most elegant formulation of the
second law of thermodynamics: in a closed system the entropy
always increases, or the degree of randomness tends to increase.

A special series of technical problems developed over the two
kinds of averaging used in statistical considerations: time-averaging,
inherently involved in all measurements; and averaging over many
different systems, the ensemble averaging of Gibbs used in the cal-
culations. The "ergodic theorems" that were extensively developed
to show that these two averages were the same again forced careful
and repeated attention on probabilistic considerations.

My second example is the theory of evolution, almost universally
acknowledged as the major intellectual event of the last century.
Charles Darwin and Alfred Russell Wallace developed the theory
independently, using clues from Malthus' essay on population. The
basic ideas are well known. Organisms vary, organisms having the
fittest variations survive, and these successful variations are passed
on to the progeny. The random element of evolution is in the "nu-
merous successive, slight favorable variations"; the offspring differ
slightly from the parents. Darwin, lacking an acceptable theory of
heredity, had little conception of how these variations come about;
he tended to believe, parallel to the developers of statistical thermo-
dynamics, that there were exact laws, but that they were unknown.

I have hitherto sometimes spoken as if the variations . . . had been due
to chance. This, of course, is a wholly incorrect expression, but it seems
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to acknowledge plainly our ignorance of the cause of each particular
variation."

But others were particularly disturbed by the chance factors ap-
parently at work in variations. This was one of the factors that led
Samuel Butler from his initial praise to a later critical view of
Darwin. Sir John Herschel was very emphatic:

We can no more accept the principle of arbitrary and casual variation
and natural selection as a sufficient account, per se, of the past and present
organic world, than we can receive the Laputian method of composing
books ... as a sufficient one of Shakespeare and the Principia.n

When a usable theory of heredity was developed during the next
half century, randomness played a major role, both in the occur-
rence of mutations in genes and in the genetic inheritence of the
offspring. So, almost in spite of Darwin, chance became increasingly
important in evolutionary theory. ". . . The law that makes and loses
fortunes at Monte Carlo is the same as that of Evolution.'

The theory of evolution roused almost every thinking man in
the late nuieteenth century. Frederick Pollock, writing about the
important British mathematician William Kingdon Clifford, says:

For two or three years the knot of Cambridge friends of whom Clifford
was a leading spirit were carried away by a wave of Darwinian en-
thusiasm: we seemed to ride triumphant on an ocean of new life and
boundless possibilities. Natural selection was to be the master-key of the
universe; we expected it to solve all riddles and reconcile all contra-
dictions."

This is only one account outside biology, but it illustrates how evo-
lution affected even those not directly concerned with it as a scientific
theory. It does not seem unreasonable, then, that at the same time
evolution contributed to the new attitude toward randomness. I

10C. Darwin, Origin of the Species (first edition), p. 114.
"Sir Herschel, Physical Geography of the Globe (Edinburgh, 1861), quoted
in John C. Green, The Death of Adam (New American Library, New York),
p. 296.
"M. Hopkins, Chance and ErrorThe Theory of Evolution (Kegan Paul,
Trench, Truber & Co., London, 1923).
13W. K. Clifford, Lectures and Essays (Macmillan, London, 1886), Intro-
duction.
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might also mention two other books that are particularly interesting
in showing the influence of evolution outside the sciences, offering
details we cannot reproduce here. One is Leo J. Henkin's Darwinism
in the English Novel 186o-1910; the other is Alvar Ellegird's Dar-
win and the General Reader.

There were of course other things h2ppening in the nineteenth
century, but these two developments were important and had far-
reaching implications outside of their immediate areas. Alfred
North Whitehead, in Science and the Modern World, claims that in
the nineteenth century "four great novel ideas were introduced into
theoretical science." Two of these ideas were energy, whose rise
in importance was related to thermodynamics, and evolution. It was
consistent with established tradition, however, to believe that the
use of chance in these areas was not essential. Other non-scientific
factors were also important; for example, Lord Kelvin's attitude
toward chance was colored by religious considerations. In S. P.
Thomson's Life we find a speech of his in the Times of 1903 arguing
that "There is nothing between absolute scientific belief in Creative
Power and the acceptance of the theory of a fortuitous concourse of
atoms."

According to our splash in the puddle theory, we should be able
to point out evidence that two nineteenth-century developments,
statistical mechanics and evolution, had very far-reaching effects in
areas quite different from their points of origin, effects reflecting
interest in randomness. This is a big task, but we will attempt to
give some minimal evidence by looking at the writings of two
important American intellectuals near the turn of the century, both
of whom were consciously influenced by statistical mechanics and
Darwinian evolution. The two are Henry Adams and Charles
Sanders Peirce.

We have Adams' account of his development in The Education
of Henry Adams. Even a casual glance shows how much of the
language of physics and biology occurs in the book, and how often
references are made to those areas. Chapter 15 is entitled "Dar-
winism," and early in the chapter he says:

The atomic theory; the correlation and conservation of energy; the
mechanical theory of the universe; the kinetic theory of gases; and
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Darwin's law of natural selection were examples of what a young man
had to take on trust.

Adams had to accept these because he was not in a position to argue
against them. Somewhat later in the book Adams comments, in his
usual third person:

He was led to think that the final synthesis of science and its ultimate
triumph was the kinetic theory of gases... . so far as he understood it,
the theory asserted that any portion of space is occupied by molecules of
gas, flying in right lines at velocities varying up to a mile a second, and
colliding with each other at intervals varying up to seventeen million
seven hundred and fifty thousand times a second. To this analysisif
one understood it rightall matter whatever was reducible and the only
difference of opinion in science regarded the doubt whether a still deeper
analysis would reduce the atom of gas to pure motion.

And a few pages later, commenting on Karl Pearson's "Grammar.
of Science":

The kinetic theory of gases is an assertion of ultimate chaos. In plain,
chaos was the law of nature; order was the dream of man.

Later, "Chaos was a primary fact even in Paris," this in reference
to Henri Poincare's position that all knowledge involves conven-
tional elements.

Of all Henry Adams' writings, "A Letter to American Teachers
of History" is most consistently saturated with thermodynamical
ideas. This 1910 paper" begins with thermodynamics. It first men-
tions the mechanical theory of the universe, and then says:

Toward the middle of the Nineteenth Centurythat is, about 1850a
new school of physicists appeared in Europe . . . made famous by the
names of William Thomson, Lord Kelvin, in England, and of Clausius
and Helmholtz in Germany, who announced a second law of thermo-
dynamics.

He quotes the second law of thermodynamics in both the Thomson
and the Clausius forms. It is not always clear how seriously one is
to take this thermodynamical model of history.

About fifteen pages into "A Letter," Darwin is presented as

14Henry Adams, The Degradation of the Democratic Dogma (Macmillan and
Co., New York, zozo), pp. 137.366.
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Meanwhile, the statistical method had, under that very name, been applied
with brilliant success to molecular physics. . . . In the very summer pre-
ceding Darwin's publication, Maxwell had read before the British Asso-
ciation the first and most important of his researches on the subject. The
consequence was that the idea that fortuitous events may result in physical
law and further that this is the way in which these laws which appear
to conflict with the principle of conservation of energy are to be explained
had taken a strong hold upon the minds of all who are abreast of the
leaders of thought. [6.297]

Peirce is not reflecting the historical attitude of the physicists
who developed statistical thermodynamics but is reading his own
views back into this work.

So it is not surprising that chance plays a fundamental role in
Peirce's metaphysics. Peirce generalized these ideas into a general
philosophy of three categories, Firstness, Secondness, and Thirdness.
These three terms have various meanings in his work, but a fre-
quent meaning of Firstness is chance. He was one of the first to
emphasize that chance was not merely for mathematical conven-
ience but was fundamental to the universe. He used the word
"Tychism," from the Greek for "chance," the "doctrine that absolute
chance is a factor in the universe." [6.2000]

This view of the essential role of chance he opposed to the view
that universal necessity determined everything by fixed mechanical
laws, in which most philosophers of science in the late nineteenth
century still believed. In a long debate between Peirce and Carus
concerning this issue, Peirce says:

The first and most fundamental element that we have to assume is a
Freedom, or Chance, or Spontaneity, by virtue of which the general vague
nothing-in-particular-ness that preceded the chaos took on a thousand
definite qualities.

In "The Doctrine of Necessity" Peirce stages a small debate
between a believer in his position and a believer in necessity, to show
that the usual arguments for absolute law are weak. Everyday ex-
periences make the presence of chance in the universe almost
obvious:

The endless variety in the world has not been created by law. It is not
of the nature of uniformity to originate variation nor of law to beget
circumstance. When we gaze on the multifariousness of nature we are
looking straight into the face of a living spontaneity. A day's ramble
in the country ought to bring this home to us. [6.553]
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A man in China bought a cow and three days and five minutes
later a Greenlander sneezed. Is that abstract circumstance connected with
any regularity whatever? And are not such relations infinitely more fre-
quent than those which are regular? [5.342J

The necessity of initial conditions in solving the equations of
mechanics is another indication to Peirce of the essential part played
by chance. Modern scientists have also stressed the "randomness"
of initial conditions: E. P. Wigner writes, "There are . . . aspects of
the world concerning which we do not believe in the existence of any
accurate regularities. We call these initial conditions."

Peirce tells us we must remember that "Three elements are
active in the world: first, chance; second, law; and third, habit
taking." [1.409] He imagines what a completely chance world
would be like, and comments, "Certainly nothing could be imagined
more systematic." For Peirce the universe begins as a state of com-
plete randomness. The interesting problem is to account for the
regularity in the universe; law must evolve out of chaos. This evo-
lutionary process is far from complete even now, and presents a
continuing process still:

We are brought, then, to this: Conformity to law exists only within a
limited range of events and even there is not perfect, for an elemen If

pure spontaneity or lawless originality mingles, or at least must be sup-
posed to mingle, with law everywhere. [1.407]

Thus Peirce's scheme starts with chaos and out of this by habit order-
liness comes, but only as a partial state.

What is of interest to us is the fundamental role of chance or
randomness in Peirce's cosmology, and the connection of that role
with statistical mechanics and Darwinism, rather than the details of
his metaphysics.

The two examples of Henry Adams and C. S. Peirce do not
establish the splash in the puddle, but they do serve at least to indi-
cate the influence of the Darwinian and kinetic theory ideas, and
they show the rising importance of chance.

Although I have concentrated on the relatively increased atten-
tion focused upon randomness in the twentieth century as compared
with the nineteenth century, randomness attracted some interest
before our century. One can find many earlier examples of the order-
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randomness dichotomy, and there have been periods when, even
before the nineteenth century, random concepts acquired some
status. One example containing elements of our present dichotomy
is the continuing battle between classicism and romanticism in the
arts and in literature. But the twentieth-century interest, as we have
indicated, is more intense and of different quality. The chance com-
ponent has never ben totally absent; even the most careful artist
in the last century could not be precisely sure of the result of his
meticulously controlled brush stroke. The classical painter resisted
chancethe goal of his years of training was to gain ever greater
control over the brush. By contrast the contemporary painter often
welcomes this random element and may even increase it. It is this
contrast that I intend to stress. Although I point to this one element,
the reader should not falsely conclude that I am not aware of non-
random elements. Even now randomness is seldom the sole factor.
When Pollock painted, the random component was far from the
only element in his technique. He chose the colors, he chose his
hand motions, and he chose the place on the canvas where he wanted
to work. Further, he could, and often did, reject the total product
at any time and begin over. Except in the most extreme examples,
randomness is not used alone anywhere; it is almost always part of
a larger situation. This is J. R. Pierce's emphasis on order.

The persistence of chance elements in highly ordered societies
suggests a human need for these elements. Perhaps no society ever
described was more completely organized than Arthur C. Clarke's
fictional city of Diaspar, described in The City and the Stars. Diaspar,
with its past, and even to some extent its future, stored in the
memory banks of the central computer, has existed with its deter-
mined social structure for over a billion years. But the original
planners of the city realized that perfect order was too much for
man to bear:

"Stability, however, is not enough. It leads too easily to stagnation, and
thence to decadence. The designers of the city took elaborate steps to
avoid this. . . . I, Khedron the Jester, am part of that plan. A very
small part, perhaps. I like to think otherwise, but I can never be sure. . . .

Let us say that I introduce calculated amounts of disorder into the city."17

11A. C. Clarke, The City and the Stars (Harcourt, Brace and Co., New York,
1953), PP. 47-53.

160



Randomness and The Twentieth Century

But our present situation confronts us with something more than a
simple dichotomy between order and disorder, as suggested in both
of the following passages, one from L. L. Whyte and one from
Erwin Schrodingcr:

In his long pursuit of order in nature, the scientist has turned a corner.
He is now after order and disorder without prejudice, having discovered
that complexity usually involves both.18

The judicious elimination of detail, which the statistical system has
taught us, has brought about a complete transformation of our knowledge
of the heavens. .. . It is manifest on all sides that this statistical method
is a dominant feature of our epoch, an important instrument of pro-
gress in almost every sphere of public life."

Although the use of random methods in physics and biology at
the end of the last century originally assumed that one was dealing
with areas that could not be treated exactly, but where exact laws
did exist, a subtle change of view has come about, so that now
random elements are seen as having a validity of their own. Both
Whyte and Schrodinger see the current situation as something more
than a choice between two possibilities. Whyte thinks both are
essential for something he calls "complexity." But I prefer Schrii-
dinger's suggestion that the two are not necessarily opposed, and that
randomness can be a tool for increasing order. Perhaps we have a
situation resembling a Hegelian synthesis, combining two themes
which had been considered in direct opposition.

Finally I note an important twentieth century reaction to ran-
domness: Joy. The persistence of games of chance through the ages
shows that men have always derived some pleasure from random-
ness; they are important in Clarke's Diaspar, for example:

In a world of order and stability, which in its broad outlines had not
changed for a billion years, it was perhaps not surprising to find an
absorbing interest in games of chance. Humanity had always been fasci-
nated by the mystery of the falling dice, the turn of a card, the spin
of the pointer . . . however, the purely intellectual fascination of chance
remained to seduce the most sophisticated minds. Machines that behaved

"L. L. Whyte, "Atomism, Structure, and Form," in Structure in Art and in
Science, ed. G. Kepes (G. Braziller, New York, 1965) p. 20.
"E. Schredinger, Science and Human Temperament, trans. J. Murphy and
W. H. Johnston (W. W. Norton, Inc., New York), p. 138.
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Everyday observation of waves includes ripples in water
or vibrations set up by a slammed door. A wave is a
traveling pattern, not the mass movement of matter.

13 Introduction to Waves

Physical Sciences Study Committee

1965

15-1 A Wave: Something Else That Travels

In the last chapter we considered at some length
a particle model of light, in which we supposed
that light consisted of a stream of particles or
corpuscles. We found that this model fails to
provide completely satisfactory explanations
for some of the behavior of light that we ob-
served. We therefore find ourselves faced with
a choice: we can try to construct a better parti-
cle model that will succeed where the earlier one
failed, or we can look for a new model based on
a completely different concept. Let us try the
second approach.

The most basic thing to be accounted for in
any model of light is the fact that light travels
through space. In looking for a new theory,
we first ask whether there is anything except a
particle (or stream of particles) that can move
ilom one point to another. The answer is "yes."
Consider, for example, what happens when we
drop a pebble into a quiet pond. A circular
pattern spreads out from the point of impact.
Such a disturbance is called a wave, and if you
watch the water closely enough, as such a wave
moves across the surface, you will find that
although the water may be churned and jostled
locally, it does not move forward with the wave.
This is quite clear if you watch a bit of wood or
a small patch of oil that may be floating on the
pond. The wood or oil moves up and down as
the wave passes; it does not travel along with
the wave. In other words, a wave can travel for
long distances, but once the disturbance has
passed, every drop of water is left where it was
before. 163
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accidents, his skills, his weaknesses, his luckagainst the world."

My final example of randomness is lighter. I am reliably in-
formed that several years ago a group of students at Harvard formed
a random number society for propagating interest in random num-
bers. Among other activities they chose each week a random
number of the week, and persuaded a local radio station to an-
nounce it!

Although the reader may not accept my thesis, I continue with
the assumption that our culture differs from the culture of the
previous few centuries partly because of an increased concern with
and conscious use of elements which are random in some sense of
the word. Vie have seen this use in seemingly unrelated areas, and
in ways previously very uncommon. Now we will enter on an even
more difficult problem: assuming that the twentieth century con-
sciously seeks out randomness, can we find any historical reasons
for its permeating diffeient fields?

I need hardly remind you of the difficulty of this problem. The-
orizing in history has generally seemed unreasonable, except to the
theorist himself and to a small group of devoted followers. The
present problem is not general history but the even more difficult
area of intellectual history. Despite vigorous attempts to understand
cultural evolution, or particular aspects of it such as the development
of scientific knowledge, I believe it is fair to say that we know far
less than we would like to know about how ideas develop. It would,
therefore, be unreasonable for me to expect to give a rich theory of
how humans modify ideas. Instead I shall grope toward a small
piece of such a theory, basing my attempt on the evidence presented
on randomness as a twentieth-century theme.

The rough idea I shall bring to your attention might be crudely
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If we look around us, we can find all sorts of
examples of waves. Fe: :iistance, we notice an
American flag as it ripples in the breeze at the
top of a flagpole. The ripples or waves travel
out along the cloth. Individual spots on the
cloth of the flag, however, hold their positions
as the waves pass by. The fourth white star in
the bottom line on the field of blue always re-
mains the fourth star in the bottom line and its
distances from the four edges of the flag remain
unchanged. Just as the water does not travel
with the water waves, so the cloth of the flag
remains in place when the waves have passed
through it.

Some waves are periodic or nearly so; the
motion of the material repeats itself over and
over. Not all waves, however, have this prop-
erty. For example, when you slam the door of
a room, the air in the doorway is suddenly com-
pressed, and this single short compression
passes as a disturbance across the room, where
it gives a sudden push to a curtain hanging over
the window. Such a wave of short duration is
called a pulse.

Here is another example of a wave pulse. We
place half a dozen pocket-billiard balls (plastic
croquet balls will work. too) in a strait/tit line
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the traveling of the wave, affected areas at a distance from the
source. Probably one source is not enough; often one needs rein-
forcement from several disturbances to create a revolution. And the
sources themselves must be powerful if the effects are to be felt
at great distances in the cultural plane.

I shall note two nineteenth-century events which were power-
ful sources, and so may have contributed to a new interest in
randomness. Both are from science, but this may reflect my own
specialization in history of science; I am likely to find examples
from the area I know best. My two examples are of unequal
weight. The minor one certainly affected profoundly the physicist's
attitude toward randomness, but how widespread its effect was is not
clear. The second example, however, was the major intellectual
event of the century.

The first example is the development of kinetic theory and
statistical thermodynamics in the last half of the century, involving
Rudolf Clausius, James Clerk Maxwell, Ludwig Boltzmann, Wil-
lard Gibbs, and others. Because physicists believed that Newtonian
mechanics was the fundamental theory, they thought that all other
theories should "reduce" to it, in the same sense that all terms could
be defined using only the terms of mechanics, and that the funda-
mental principles of other areas could be deduced logically from the
principles of mechanics. This attitude, applied to thermodynamics,
led to kinetic theory and statistical thermodynamics.

In kinetic theory a gas (a word which may originally have
meant "chaos") was viewed as a very large number of separate
particles, each obeying the Newtonian laws of motion, exerting

9Pointed out to me by Steven Brush. See J. R. Partington, "Joan Baptist von
Helmont," Annals of Science, 1, 359-384 (1936).
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later, the driver of the second car, seeing that
the car ahead of him is in motion, starts his car
forward. Still later, the driver of the third car
gets his car under way, and so on down the line
away from the traffic signal. You can see a
"pulse" move down the line of cars. It is inter-
esting that this "starting pulse" travels in one
direction while the cars travel in the other direc-
tion.

Just how fast the starting pulse travels back
depends on how fast the various drivers react,
and how their cars respond. If we were able to
handpick a group of drivers with identical re-
action times, and provide them with cars that
accelerated in exactly the same way, the starting
pulse would travel backward at a uniform speed.

What is alike in all of these examples? In
each case the disturbance travels through some
mediumthrough the water, the cloth of a flag,
the billiard balls, or the line of cars: but t`2
medium does not go along with the disturbance.
Disturbances which travel through media are
what we mean by waves. We can now answer
the question we asked at the beginning of this
section. is there anything except a particle that
can move from one point to another? A wave,
a thing which is not itself a particle of matter,
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15-2 Waves on Coil Springs

Do waves really behave like light? To find out,
we must know more about them. When we
know how they act, we can compare their be-
havior with what we know about light and with
other things that we can find out about it. The
variety of examples we have mentioned also
suggests that waves are worth studying for their
own sake.

It is convenient to start our study of waves
with a coil spring.* Figure 15-1 shows pictures
of a pulse traveling along such a spring. These
pictures were taken by a movie camera at inter-
vals of -214- of a second.

We see that the shape of the pulse does not
change as it moves along. Except for the fact
that the pulse moves, its picture at one moment
is just like a later picture. Also we see that the
pulse moves the same distance in each interval
between picturesit moves along the spring at
constant speed.

The spring as a whole is not permanently
changed by the passage of the pulse. But what
happens to each small piece of spring as the
pulse goes by? To help us fix our attention on
one piece, we can mark the spot by tying on a
bit of white string or ribbon as shown in Fig.
15-2. If we then shake the spring to start a
pulse moving along it, we can see how the
marked spot is displaced. We find that it moves
at right angles to the spring as the pulse passes
it.

Other pieces of the spring, as well as the
marked spot, also move. We can see which
pieces are moving and which way they go if we
look at two pictures, one of which is taken

If you find it hard to get a coil spring, a flexible clothesline
or a rubber tube will also do pretty well. Tie one end to a
doorknob and shake the other. If the clothesline or tube is
sufficiently heavy, you will get good pulses that travel slowly
enough for easy observation.

introduation to Waves
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shortly after the other, Here we shall use two
successive pictures taken from Fig. 15-2. We
have printed these two pictures together in Fig.
15-3 so that we see the pulse in two successive
positions just as we would see it in a rapid
double exposure. Below the photo in Fig. 15-3
we have traced the pulse in its earlier position,
and the gray line shows the later position. As
the arrows show, while the pulse moved from

<1=1

15-3 The relation between the motion of a pulse traveling from
right to left and the motion of the coil. The photograph
shows the pulse in two successive positions. The arrows
in the diagram indicate how the coil moves as the pulse
passes. The largs, open arrow shows the direction of the
motion of the pulse.

right to left, each piece of the coil in the right-
hand half of the pulse moved down and each
piece of coil in the left-hand half moved up.

If the pulse were moving from left to right,
just the reverse would be true, as we show in
Fig. 15-4. Here we use a schematic pulse be-
cause it is a little easier to work with and we can
make 'the time interval between positions as
short as'we wish. In this way we can determine
the instantaneous motion of the coil. Thus, if
we know in which direction the pulse is moving,
we can determine how each point of the spring
moves at any particular stage in the passage of

Introduction to Waves
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i. The Law of Conservation
2. The Law of Dissipation
3. The Law of Evolution

The contrast Adams is making is between Darwin's ideas and Kel-
vin's ideas.

We find other similar references in Henry Adams, but this
should be enough to show his interest in Darwin and kinetic theory.
Other aspects of contemporary science also very much influenced
him; he often refers to the enormous change produced by the
discovery of new kinds of radiation at the turn of the century. He
seems to be a particularly rewarding individual to study for an
understanding of the intellectual currents at the beginning of the
century, as Harold G. Cassidy has pointed out:

Henry Adams was an epitome of the non-scientist faced with science
that he could not understand, and deeply disturbed by the technological
changes of the time. He was a man with leisure, with the wealth to
travel. With his enquiring mind he sensed, and with his eyes he saw
a great ferment at work in the World. He called it a force, and tried
to weigh it along with the other forces that moved mankind. The edu-
cation he had received left him inadequate from a technical point of
view to understand, much less cope with, these new forces. Yet his
insights were often remarkable ones, and instructive to us who look at
our own period from so close at hand 15

As final evidence we consider the work of the seminal American
philosopher Charles Sanders Peirce. Peirce, although seldom hold-
ing an academic position, played an important role in American
philosophy, particularly in the development of pragmatism. He was
the leader of the informal "Metaphysical Club" in Cambridge dur-

15Harold G. Cassidy, "The Muse and the Axiom," American Scientist 51,
315 (1963).
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the pulse. On the other hand, if we know how
the parts of the spring move, we can determine
the direction in which the pulse is traveling.

We now have a good notion of how the pieces
of spring move, even though there is no visible
motion in any one of our pictures. Really, what
we have done is to observe (1) that any pulse
moves undistorted at constant speed along the

pulse

the same pulse an
instant later

15-4 The relation between the motion of a pulse traveling from
left to right and the motion of the spring.

spring and (2) that the spring itself moves only
at right angles to the motion of the pulse. We
can combine these two pieces of information to
learn how each part of the spring moves at any
time. Of course, we have looked only at the
s,: iplest waves, and the statement we have just
made may not be true of all waves. Even in the



evidenced by many passages in his work, such as these comments in
"On the Fixation of Belief":

Mr. Darwin has purposed to apply the statistical method to biology. The
same thing has been done in a widely different branch of science, the
theory of gases. We are unable to say what the movements of any par-
ticular molecule of gas would be on a certain hypothesis concerning
the constitution of this class of bodies. Clausius and Maxwell were yet
able, eight years before the publication of Darwin's immortal work, by
the application of the doctrine of probabilities, to predict that in the
long run such and such a proportion of the molecules would under
given circumstances, acquire such and such velocities; that there would
take place, every second, such and such a relative number of collisions,
etc., and from these propositions were able to deduce certain properties of
gases especially in regard to the heat relations. In like manner, Darwin,
while unable to say what the operation of variation and natural selection
in any individual case will be, demonstrates that, in the long run, they
will, or would, adopt animals .to their circumstances.16 15.362]

A second example in which Peirce links the two theories is in
"Evolutionary Lore":

The Origin of the Species was published toward the end of the year
1859. The preceding years since 5846 had been one of the most pro-
ductive seasonsor if extended so as to cover the book we are con-
sidering, the most productive period in the history of science from its
beginnings until now. The idea that chance begets order, which is one
of the cornerstones of modern physics . . . was at that time put into its
clearest light. [6.297]

He goes on to mention Quetelet and Buckle, and then begins a
discussion of the kinetic theory:

"C. S. Peirce, Collected Papers ed. C. Hartshorn and P. Weiss (Harvard Uni-
versity Press, Cambridge, Mass.). References are to section numbers.
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other, or do they somehow knock each other
out?

The best way to find out is to try. The photo-
graphs in Fig. 15-5 show what happens when
two pulses are started at opposite ends of a
spring at the same time, one traveling from left
to right and one from right to left. The top pic-
tures show the pulses approaching each other
as if each had the spring to itself. As they cross
each other, the two pulses combine to form
complicated shapes. But after having crossed.
they again assume their original shapes and
travel along the spring as if nothing had hap-
pened, as is indicated by the pictures at the
bottom. The left-going pulse continues to
travel to the left with its original shape. The
right-going pulse continues to move on to the
right with its earlier form. We can perform this
experiment over and over with different pulses.
We always get the same general result.

The fact that two pulses pass through each
other without either being altered is a funda-
mental property of waves. If we throw two
bails in opposite directions. and they hit each
other, their motion is violently changed. The
crossing of waves and the crossing of streams
of balls made of solid matter are thus two very

Inttoduction to Waves



15-5 Two pulses crossing each other. Notice that the two pulses
have different shapes. Thus we can see that the one which
was on the left at the beginning is on the right after the
crossing, and vice versa.
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15-6 The superposition of two pulses. The displacement of the

combined pulse is the sum of the separate displacements.

matter of fact, it also works for more than two
pulsesthe displacements due to any number
of pulses can be added.

We can summarize the whole situation as
follows. To find the form of the total wave dis-
turbance at any time, we add at each point the
displacements belonging to each pulse that is

introduction tc Waves
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proper, so it is not expressed openly. But in other places randomness
is clearly acknowledged. We noted that the artist is particularly
willing to admit the use of randomness, so it is not surprising to
see an artist, Ben Shahn, admitting his pleasure: "I love chaos. It is
a mysterious, unknown road with unexpected turnings. It is the way
out. It is freedom, man's best hope.""

20Quoted in industrial Design 13, t6 (1966).
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Our second special case is shown in Fig. 15-9.
Here we have two similar pulses, one coming
from the right and one from the left. In one
the displacements are upward and in the other
they are downward. These pulses differ from
those of Fig. 15-7 in that neither is symmetrical,
although the two are alike in shape and size.

Because neither of the pulses is symmetrically
shaped, they never completely cancel each
other. But there is always one point P on the
spring which will stand still. That point is ex-
actly halfway between the two, pulses. As the
pulses come together, they pass simultaneously
through that hallway point in such a way that
the highest point of one pulse and the lowest
point of the other just cancel each other out.
The same argument applies to any other pair of
corresponding points on the pulses. They al-
ways arrive at the midpoint of the spring to-
gether, one on top ..nd one at the bottom.
Consequently, the midpoint stands still.

15-4 Reflection and Transmission

When a pulse moving on a spring comes to an
end that is held fixed, it bounces back. This re-
versal of direction is called reflection, and the
pulse that comes back is called the reflected
pulse. In Fig. 15-10 the fixed end is on the left.
In the original or incident pulse, which moves to
the left, the displacement is upward. The re-
turning pulse has its displacement downward.
The pulse come.; back upside down, but with
the same shape that it had before it was re-
flected.

You may wonder why the reflected pulse is
upside down. The reason for this behavior is
that one point on the spring, in this case the end
point held by the hand, does not move. We
have already met a situation where a point on
the spring remained at rest; this was the point

Introduction to Waves
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P in Fig. 15-9. Cover the right-nand half of
Fig. 15-9 and you will see an upward pulse
moving to the right, "flattening out" as it ap-
proaches P, and finally being reflected upside
down. Now, at the front of an upward pulse,
the spring itself moves upward (Fig. 15-3).
When the front of the pulse in Fig. 15-9 g . to
P, the point P should move upward. But since
P remains at rest, the upward motion of the
spring must be canceled by a downward mo-
tion. The only difference between the situations
shown in Figs. 15-9 and 15-10 is that in Fig.
15-9 we supply the necessary downward motion
by sending a downwar' pulse from the right,
whereas in Fig. 15-10 we supply the downward
motion by simply holding the end point fixed.
Forcing the end point to remain at rest is just
another way of supplying the downward mo-
tion which cancels the motion of the spring due
to the original pulse, and then propagates to the
right in the form of an upside-down pulse.

Imagine now that instead of fixin3 our coil
spring at one end, we connect it to another
spring which is much heavier and therefore
harder to move. Our new arrangement will be
somewhere in between the two cases (a) the
original spring tied down, and (b) the original
spring just lengthened by an additional piece of
the same material. In case (a) the whole pulse
is reflected upside down; in case (b) the whole
pulse goes straight on. We may, therefore,
expect that under our new arrangement part of
the pulse will be reflected upside down, and part
of it will go on, or as we say, will be transmitted.
This effect is shown in Fig. 15-11 where the
original pulse comes from the right and the
heavier spring is on the left. We see that at the
junction or boundary between the two springs
which are the media in which the wave trav-
elsthe pulse splits into two parts, a reflected
and a transmitted pulse. Like superposition,
the splitting into a reflected and a transmitted
part is a typical wave property.
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15-10 Reflection of a pulse from o fixed end. The reflected pulse
is upside down.
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15-12 A pulse passing from a heavy spring (left) to a light spring.
At the junction the pulse is partially transmitted and par-
tially reflected. The reflected pulse is right side up.

Introduction to Waves
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What happens when a pulse goes the other
way, traveling along the heavier spring and
arriving at the junction between it and the light
spring? This is not so easy to foresee. We no
longer can bracket the behavior between two
situations in which we know the answer. But
experiment tells us what takes place. In Fig.
15-12 we see a pulse moving from the left, from
a heavy toward a light spring. Here, as in the
opposite case, illustrated in Fig. 15-11, part of
the pulse is transmitted and part is reflected, but
this time the reflected pulse is right-side up.

In summary, then, when a pulse is sent along
a spring toward a junction with a second spring,
we observe that the V;Ale pulse is reflected up-
side down whenever it second spring is very
much heavier than t' le first. As the second
spring is replaced by fighter and lighter spring.s,
the reflected pulse becomes small and a larger
and larger transmitted pulse is observed to go
on beyond the junction. When the second
spring is only as massive as the first, no reflected
pulse is left and the original pulse iscompletely
transmitted. Then if the second spring is made
still lighter, reflection sets in again, this time
with the reflected pulse right-side up. The
lighter the second spring, the larger is the re-
flected pulse. When the second spring is neg-
ligible the reflected pulse is nearly the same size
as the pulse sent in. This can be demonstrated
with a heavy spring tied to a thin nylon thread
(Fig. 15-13).
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15-13 A pulse on a spring reflected from a junction with a very
light thread. The whole pulse returns right side up. The
blurr;ng of the thread in the middle frames of the sequence
of pictures indicates that the particles of the thread are
moving at higl .peed as the pulse passes. Con you deter-
mine the direction of this motion in each of the frames?

Introduction to Waves

183



Two masters of physics 'introduce the wave concept in
this section from a well-known popuIJI book.

14 What is a Wave?

Albert Einstein and Leopold Infeld

19 61

A bit of gossip starting in Washington reaches New
York very quickly, even though not a single individual
who takes part in spreading it travels between these
two cities. There are two quite different motions in-
volved, that of the rumor, Washington to New York,
and that of the persons who spread the rumor. The
wind, passing over a field of grain, sets up a wave
which spreads out across the whole field. Here again
we must distinguish between the motion of the wave
and the motion of the separate plants, which undergo
only small oscillations. We have all seen the waves that
spread in wider and wider circles when a stone is
thrown into a pool of water. The motion of the wave
is very different from that of the particles of water.
The particles merely go up and down. The observed
motion of the wave is that of a state of matter and not
of matter itself. A cork floating on the wave shows
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this clearly, for it moves up and down in imitation of
the actual motion of the water, instead of being carried
along by the wave.

In order to understand better the mechanism of the
wave let us again consider an idealized experiment.
Suppose that a large space is filled quite uniformly with
water, or air, or some other "medium." Somewhere in
the center there is a sphere. At the beginning of the
experiment there is no motion at all. Suddenly the
sphere begins to "breathe" rhythmically, expanding
and contracting in volume. although retaining its spher-
ical shape. What will happen in the medium? Let us
begin our examination at the moment the sphere begins
to expand. The particles of the medium in the immedi-
ate vicinity of the sphere are pushed out, so that the
density of a spherical shell of water, or air, as the case
may be, is increased above its normal value. Similarly,
when the sphere contracts, the density of that part of
the medium immediately surrounding it will be 'le-
creased. These changes of density are propagated'
throughout the entire medium. The particles constitut-
ing the medium perform only small vibrations, but the
whole motion is that of a progressive wave. The essen-
tially new thing here is that for the first time we con-
sider the motion of something which is not matter, but
energy propagated through matter.

Using the example of the pulsating spiiere, we may
introduce two general physical concepts, important for
the characterization of waves. The first is the velocity
with which the wave spreads. This will depend on the
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medium, being different for water and air, for exam-
ple. The second concept is that of wave-length. In the
case of waves on a sea or river it is the distance from
the trough of one wave to that of the next, or from the
crest of one wave to that of the next. Thus sea waves
have greater wave-length than river waves. In the
case of our waves set up by a pulsating sphere the
wave-length is the distance, at some definite time, be-
tween two neighboring spherical shells showing max-
ima or minima of density. It is evident that this dis-
tance will not depend on the medium alone. The rate
of pulsation of the sphere will certainly have a great
effect, making the wave- length shorter if the pulsation
becomes more rapid, longer if the pulsation becomes
slower.

This concept of a wave proved very successful in
physics. It is definitely a mechanical concept. The phe-
nomenon is reduced to the motion of particles which,
according to the kinetic theory, are constituents of
matter. Thus every theory whicl- -ses the concept of
wave can, in general, be regare.--. as a mechanical
theory. For example, the explanation of acoustical phe-
nomtna is based essentially on this concept. Vibrating
bodies, such as vocal .!ords and violin strings, are
sources of sound waves which are propagated through
the air in the manner explained for the pulsating sphere.
It is thus possible to reduce all acoustical phenomena to
mechanic; by means of the wave concept.

It has been emphasized that we must distinguish be-
tween the motion of the particles and that of the wave

What is a Wave?
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itself, which is a state of the medium. The two are
very different but it is apparent that in our example of
the pulsating sphere both motions take place in the

same straight line. The particles of the medium oscillate
along short line segments, and the density increases
and decreases periodically in accordance with this mo-
tion. The direction in which the wave spreads and the
line on which the oscillations lie are the same. This
type of wave is called longitudinal. But is this the only
kind of wave? It is important for our further considera-
tions to realize the possibility of a different kind of
wave, called transverse.

Let us change our previous example. We still have
the sphere, but it is immersed in a medium of a differ-
ent kind, a sort of jelly instead of air or water. Further-
more, the sphere no longer pulsates but rotates in one
direction through a small angle and then back again,

i
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15-7 The superposition of two equal and opposite pulses on a
coil spring. In the fifth picture they almost cancel each
other.

What is a Wave?

always in the same rhythmical way and about a definite
axis. The jelly adheres to the sphere and thus the ad-
hering portions are forced to imitate the motion. These
portions force those situated a little further away to
imitate the same motion, and so on, so that a wave is
set up in the medium. If we keep in mind the distinc-

tion between the motion of the medium and the mo-



travels along the spring from the right-hand end
with one that displaces the spring upward and
travels from the left. Suppose that the two
pulses have exactly the same shape and size and
that each is symmetrical. Notice that in one
picture the addition of equal displacements up-
ward (plus) and downward (minus) leaves us
with a net displacement of zero. There is clearly
a moment, as the pulses pass each other. when
the whole spring appears undisplaced. (See
also the drawing of Fig. 15-8.) Why does the
picture not look exactly like a spring at rest?
Let us consider the difference between an un-
displaced spring carrying two equal and oppo-
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15-8 The superposition of two equal and opposite pulses. (A)
Before complete cancellation. (B) At complete cancellation.
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One more remark: the wave produced by a pulsat-
ing or oscillating sphere in a homogeneous medium is
a spherical wave. It is called so because at any given
moment all points on any sphere surrounding the
source behave in the same way. Let us consider a por-
tion of such a sphere at a great distance from the
source. The farther away the portion is, and the
smaller we take it, the more it resembles a plane. We
can say, without trying to be too rigorous, that there
is no essential difference between a part of a plane and

1. It
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The basic equation which summarizes the properties of
waves is developed as an example of the application of
mathematics to physics. Lindsay's detailed discussion
will be rewarding for the student who has some knowl
edge of calculus coupled with persistence to work on
the more advanced passages.

15 Wave Motion and Acoustics

Robert Bruce Lindsay

1940

1. Concept of a Wave. In the discussion of radiation as a type of
heat transfer (3ec. 4, Chapter XVII) mention was made of the explana-
tion of this in terms of wave motion. It now becomes necessary to
elucidate this important concept, which is basic for acoustics, optics,
and a large part of modern physics.

No one who has observed the phenomenon taking place when a stone
is dropped on a water surface can have failed to be impressed
by the way in which the disturbance spreads out in all direc-
tions from the point where it is first produced. In an almost
uncanny fashion the motion involved in the original disturb-
ance of the water surface is transferred to distant parts of
the surface without any motion of the water itself from the
original point to the distant ones. In other words, we here
have to deal primarily with the motion not of material but of
a change in the configuration of material. This type of motion
is known as wave motion, and a wave may be briefly defined as any
propagated disturbance in a continuous medium.

A fe-7 well-known illustrations will serve to focus attention on the
meaning of the wave concept. (1) A kink produced in a long string
or rubber hose by shaking at one point appears to move along the string.
(2) A long metallic ribbon (AB in Fig. 28.1) with perpendicular side
bars attached may be twisted at the bottom and the twist will be
observed to travel up the ribbon and :et cn again after reaching the top.
We call this a torsional wave. (3? A solid metal rod AB is rigidly
clamped (Fig. 26.2). A vertically suspended ivory ball C rests lightly

against the end B. If one taps the rod lightly at A, the
ball after an extremely short interval flies away from B.
We say that a compressional elastic wave has traveled
along the rod; the elastic " &mese " produced by the

Fia. 26.2 impact at A has been propagated to B. (4) A person
speaks and another person at some distance hears him; the elastic dis-
turbance produced in the air in front of the mouth of the speaker travels
through the air to the ear of the hearer; if the air is removed the propa-
gation fails. (5) The electromagnetic disturbance in the antenna of a
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radio station travels through space to be picked up by a radio receiver:
this more complicated phenomenon we call propagation of electro-
magnetic waves. Light waves are a special case.

We intend to sty all kinds of waves in this part of the book. First,
however, let us note znme general properties. The propagation of the
disturbance always takes place with a definite velocity which depends on
the medium and on the nature of the disturbance. This is called the
velocity of the wave and is evidently a very important wave charac-
teristic. Wave velocities may range from a few meters per second as in
waves in a string to 344 meters/sec for sound in air at room temperature
and to 3 X 108 meters/sec for the velocity of light in vacuo.

When the propagated disturbance is a displacement of the medium
from its equilibrium condition in the direction of propagation the wave
is said to be longitudinal. As examples, we note the compressional
wave iii a solid rod and sound waves in air. When the disturbance is a
displacement perpendicular to the direction of propagation the wave
is called transverse. As examples, we can mention the torsional waves
in the ribbon previously cited and light or electromagnetic waves in
general. Waves on the surface of a liquid like water are a vtry common
illustration of a combination of transverse and longitudinal waves.

2. Mathematical Representation of Wave Motion. If we are to
make an effective study of waves we must have a way of representing
them mathematically. This boils down to the need for a mathematical

function to represent a disturbance moving with
fix-ved f(x-Vti) definite velocity V through a medium. Let us

simplify our picture by supposing that the disturb-,

ance is a displacement denoted by and is at any
;co xi instant a function of x alone. But since it moves
Fto. 26.3 it must also be a function of I, the time. Hence

our task is to find the junction = f (x, t) which
depicts a wave traveling along the positivex axis with velocity V. Con-
sider the function

t = .1*(x Vt), (1)

where the argument is the combination of x and t in the form x Vt.
To understand the physical meaning of such a function, take an arbi-
trary time t = t0; then t = f (x Vto) is a function of x alone. In
Fig. 26.3 we have indicated the plot of this function in the neighborhood
of x = x0. Now consider a later time t and plot the function
f (x Vt1), which is again a function of x alone. In Fig. 26.3 we have
plotted a portion of this in the vicinity of x = xi. The value of t
for t 1 to at the point x = x0 is clearly f (xo Vto). The value of E
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for t = ti at the point x = xi is just as clearly f(xl Vti). These two
values will be equal if we choose

xo Vto = xi Vti,
Or

xi zo = V(tr to). (2)

In other words, the value of the function at time t = to at point
x = xo reappears at the point x = x1 at the later time t = 11
where these quantities are related by eq. 2. Any two points indeed are
related in this way, which means that the whole function of x changes
with time in such a fashion that it appears to be moving along the
positive x axis with velocity V. But this is what we mean by wave
motion. Hence we see that i = f(x Vt) represents a wave traveling
in the positive x direction with velocity V. Note that nothing is said
about the shape of the function: this is so far quite arbitrary, e.g.,
possible forms of f(x Vt) are C1(x Vt), C2(x Vt)2, ecict-",
etc., where C1, C2, C3 are constants put in to secure the correct dimen-
sionality brit numerically arbitrary until more conditions are laid on
the wave.

It is left for the reader to show by precisely the same reasoning as
above that E = f (x + Vt) is the mathematical representation of a wave
progressing in the negative x direction with velocity V.

Let us again emphasize that the function f(x Vt) is a function of
both space and time, i.e., at any instant of time it varies from place to
place along the x axis, while at any particular place it varies as time
passes. Its ability to represent wave motion is inherent in the way in
which the space and time dependence are tied together, so to speak, in
the argument of the function.

3. Wave Velocity. Since the velocity of a wave is such an important
characteristic we ought to devote some attention to its evaluation.
Going back to (1), let us differentiate both sides partially with respect
to x. Applying the ordinary calculus rule about the differentiation of
a function of a function, we get

aZ aj(z Vt) a(x Vt) afiz Vt)

ax a(x Vt) ax a(x Vt)'

and a second differentiation yields likewise

82E a2Az vo
axe a(x vo2.

Similarly if we differentiate first once and then twice partially with

(3)

4
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respect to t, the results are

aE °Az vt) a(x vt) v °fix vt)
at a(x Vt) at 8 (x vo'

a2E a2f4 - Vt)
ate 8(x Vt)2

Comparison of (3) and (4) yields
82E /et

" ate/ axe

at axe
sW77

V =
E

(5)

where, of course, we take the positive sign of the radical. We may con-
sider (5) the fundamental equation of wave motion. From our present
standpoint it is significant because it gives us a means of finding out
something about V. The reader might indeed query why we went to
the trouble of conducting two differentiations, since we might have at
once

Or

(4)

v . - it ix.at / af

The trouble with this is its lack of generality. It holds only for a wave
in the positive x direction. The reader can readily show that, for a

wave in the negative x direction, one gets V = However,
/

at ax
the form (5) holds precisely for this case as it does for the positive x
direction. Hence we take (5) to be more fundamental.

To find Vin any specific case we must evaluate the ratio of the
derivatives in (5). As an illustration, let us do this for the longitudinal
waves in a solid rod already mentioned in Sec. 1. Consider the rod a

Ay cylinder of cross-sectional area
S placed with its axis along
the x axis. (Fig. 26.4.) Sup-

........ pose that at some point of the

Flo. 28.4 a rod a longitudinal tensile stress
F is applied. The result is a

displacement of every point of the rod from its equilibrium position,
i.e., a dilatational strain (cf. Sec. 1, Chapter XI). The measure cf this
strain is the increase in length per unit length of any element of

s F +' ax
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4. Harmonic Waves. As our previous discussion should have amply
indicated, there is nothing essentially periodic about wave motion.
Periodicity implies the repetition at regular intervals of time of the
same phenomenon at a particular place. But the passage of a solitary
hump of displacement through a medium with velocity V does not
fulfill this requirement though it is a wave. Nevertheless it turns out
that the most important kinds of waves for physical problems are periodic
waves of which the simplest type is the simple harmonic or sinusoidal
variety. In such a wave the disturbance, e.g., a displacement of the
medium, is a sine or cosine function of both position and time, with these
quantities entering in the characteristic combination x Vt. Since we
do not associate meaning with the sine or cosine of a distance, we must
write for the displacement in a sinusoidal wave

E = A sin k(x Vt), (18)

where k is a constant having the dimensions of reciprocal length, so as
to make k(x Vt) non-dimensional. If
we plot E as a function of x for a partic-
ular instant t = to, we get the usual sine
curve indicated in Fig. 26.6. The maxi-
mum,displacement A is called the ampli-
tude of the harmonic wave. The question
of the physical significance of k arises.
Let us call the interval along the x axis after which the displacement
repeats itself in the same way X (cf. the figure). Then clearly

A. sin (kx V kto) = A sin [k(x + X) Vktol.

But this means that

kx kVto + 2r = k(x ± X) kVto

2ir
whence k = (19)

X

The quantity X is known as the wavelength of the harmonic wave. Tech-
nically speaking, it is the distance between successive points at which
the wave differs in phase by 2r, e.g., the distance between successive
maximum displacements or crests, or the equal distance between suc-
cessive minimum displacements or troughs.

We can also express k in terms of the number of waves which pass
any point in unit time, i.e., the frequency, v. For at any particular
point E oscillates in time with a period P, let us say. Take the point xo.
Then

E = A sin k(x0 Vt).

t

Flo. 26.6
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After the expiration of time P, the displacement must return to the
same value. Thus

A sin k(xo Vt) = A sin k[xo V(t P)i,
whence

k(xo Vt) = k[xo V (t P)]+ 2r

kVP = 2r,

Or

so thst

2r 2rv,
VP V (20)

since the frequency v = 1/P. The combination of (19) and (20) gives
the very important wave formula

A= VP = V
(21)

This could have been seen indeed at once from the definition of wave
length, frequency, and period. Consulting Fig. 26.6, we see that a crest
travels distance X in time P, progressing with constant velocity V.
Hence (21) follows at once. It holds for all types of harmonic waves
and indicates that waves of high frequency have short wave length, and
vice versa.

It is customary to define the phase of a harmonic wave as the argument
of the sine in the expression (18). Thus

Phase of harmonic wave = k(x Vt). (22)

This may in turn be written in various ways, depending on the manner
in which k is expressed. The reader will have no difficulty verifying
the equivalence of

k(x Vt) = 24
X

vt) = (kx 2rvt)

= 2r z
,43) = 2r z V

(23)

Convenience dictates the choice to be made for any particular purpose.
5. Wave Front. Huygens' Principle. So far we have spoken only

of a wave progressing along the positive or negative x directions. But
we recall that this is indeed a special case: water waves spread over a
surface and sound and light waves spread in general through three-
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dimensional space. Evidently we need another concept to take account
of this spatial distribution. This is the wave front, defined as Cie surface
at all points of which the phase is the same at the same instant. The
simplest type of wave front is a plane, and we can see its meaning best
by considering this case. In Fig. 26.7 we have in-
dicated a plane PP' perpendiculae to the x axis. Let us
suppose that a disturbance is being propagated along p
the x axis in such a way that the phase is the same at I/
some instant at all points of the plane indicated. This
means that the displacement E is the same at all points
of the plane and, moreover, that the displacement ve-
locity ()vat is also the same. Of course the plane will not in practice
extend to infinity, but will have finite dimensions.

If a wave spreads out from a single point in a medium having the
same properties in every part, the wave front will be a sphere. This is
approximately true, for example, of sound emitted from a small source.
A portion of a spherical wave front far away from the source will be
approximately plane.

The use of wave fronts is an important means of studying the propa-
gation of waves. The question arises: If one knows what the wave
front of a particular progressive wave is at one instant, how can one
ascertain what it is at some subsequent instant? The answer to this

question is provided by a fundamental principle first
enunciated by Huygens. In Fig. 26.8, let us represent
the wave front at the instant t by AB. This is strictly,
of course, its trace on the plane of the paper. Draw from
every point of AB a hemispherical wavelet of radius equal

B' to V dt, where V is the wave velocity in the medium and
B dt is a small interval of time. Now draw the surface which

Fla. 26.8 touches all these wavelets, i.e., the mathematical envelope
of the set. This will form the wave surface A'B', which

according to Huygens' principle constitutes the new wave surface at
the later time t -I- dt.

6. Reflection and Refraction of Plane Waves. One of the uses of
Huygens principie is the determination of the laws of reflection and
refraction of a wave meeting the surface separating two media. The
phenomenon of reflection is a common observation with all kinds of
waves, e.g., water waves from a pier, sound waves from a high wall
(echo), and light waves from a mirror. The law governing the geo-
metrical characteristics of reflection has been known for a long time.
We want now to examine it carefully in the light of the fundamental
principle of the propagation of wave fronts.

F a. 26.7
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We shall confine our attention to the reflection of a plane wave at a
plane surface. In Fig. 26.9, let SS' denote the trace on the plane of
the paper of the plane surface separating the media I and II. Imagine
that a plane wave front AB (strictly, of course, AB is the trace on

the plane of the paper of the wave front whicho ,R
itself is assumed normal to the plane of the

s VW s, paper, but for simplicity we shall use the -'otation
41N, F c just indicated) is incident on the surface at
Flo. 26a the angle i = ZBAC. This is also the angle

which the normal to the wave front OA makes
with the normal to the surface NN'. We shall call it the angle of inci-
dence. At the instant when we contemplate the wave front its end A
is in contact with the surface. We wish to construct the wave front
after the expiration of time t, where this is the time taken for the dis-
turbance to travel from the end B to the surface. Draw BC normal
to the wave front. Then if the velocity in the medium I is V1 we
have BC = Vit. Strictly speaking, we ought to trace tho successive
positions of the wave front as the disturbance proceeds from B to C.
Actually, since the wave front is plane it suffices to draw, using A as
center, a semicircle with radius Vit. Then we know that, by the time
the disturbance from B has reached C, the reflected disturbance from A
has reached some point on the hemisphere of which this semicircle is
the trace. Hence the trace of the reflected wave front will be the
line CD through C tangent to this semicircle. This can be verified by
constructing the intermediate wavelets between C and D by means of
Huygens' principle. The tangent just drawn will be seen to be tangent
to them all. Since AD is normal to CD and BC = AD is normal to AB,
it follows that the angle which CD makes with SS' is equal to the angle
which AB makes with SS'. We may call the former angle the angle of
reflection. But then we have shown that in the reflection of a plane
wave front from a plane surface the angle of incidence is equal to the
angle of reflection. This is the law of reflection for plane waves. Note
that it can be gi sl a very simple expression in terms of the normals
to the wave fronts. Thus OA, the normal to the incident wave front,
will be called the incident ray. Similarly ADR, the normal to the
reflected wave front CD, will be called the reflected ray. From the con-
struction it is clear that these make thesame angle with the normal to
the surface. We shall often find it convenient in treating wave motion
to replace wave fronts by rays. Another essential part of the law of
plane wave reflection is the result, easily evident from Fig. 26.9, that
the reflected ray lies in the same plane as the incident ray, namely the
plane of the diagram.



Wave Mot on and Acoustics

Let us now go on to a discussion of the refry a lar,e wave
at a plane surface. Consider again (referrint ) - . 26 10) the
bounding surface SS' between media I and II in winch the wave veloci-
ties are V1 and V2, respectively. The plane wave front AB is incident
on SS' at angle i. The problem is to construct the wave front in
medium II at the end of time t where t =
BC /V1. We shall assume that V2 < V1.. In (3

N\
time t the disturbance from A will be some-

i

where on the surface of the hemispherical wave
.c S'

r
front whose trace is the circle of radius V2t. II

Draw the tangent ,from C to this circle, i.e., Ns
CF. This is the wave front desired, as may
be readily verified by constructing other wave-
lets in accordance with Huygens' principle. The refracted ray is AF,
which makes with the normal NN' the same angle r (the so-called angle
of refraction) which CF makes with the surface SS'. From Fig. 26.10
we see that

Fia. 26.10

whence

. BC V1t
inn z = = ,

AC AC

AF V2t
sin r = = f

AC AC

sin i = V1--
sin r V2

(24)

This is the law of refraction for plane waves of every variety and is
usually called Snell's law, because Snell discovered it for light. The
ratio V1 /V2 may be called the index of refraction of medium if with
respect to medium I. Obviously its value depends on the kind of wave
being considered.

It ought to bi) emphasized that, although we have derived the laws
of reflection and refraction for a plane wave at a plane surface, they can
be readily generalized to wave fronts and surfaces of arbitrary form.
In general it is easier to work with the normals to the wave front or the
rays. We shall see good examples of this when we come to light. We
shall also have occasion to note where this procedure does not work.

We have neglected one important phenomenon associated with the
reflection of waves at a boundary. This can be understood in terms
of the experiment on torsional waves in a metal ribbon referred to in
Sec. 1 of this chapter. If the ribbon is rigidly fastened at the ceiling,
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when the " twist " wave reaches this point, the ribbon is observed to
stop twisting in the original direction and to begin to twist in the
opposite direction as the wave is reflected downwards. This corresponds
to what we shall term a change in phase on reflection. Closer analysis
of the problem shows that, if we define the phase of a harmonic wave
as in eq. 22, the total change in phase when a wave is reflected at a rigid
boundary is equal to r, corresponding to a half-wave-length change in x.
On the other hand, when a wave is reflected at a boundary which is per-
fectly free to move, the change of phase is zero. This can be tested
experimentally in the case of the torsional wave in the ribbon by giving
the ribbon perfect freedom of rotation where it is attached to the ceiling.
The behavior of the phase of an elastic wave on reflection can be stated
in even more general fashion, viz.: when an elastic wave is reflected at
a boundary in going from an elastically less rigid to an elastically more
rigid medium (where here the effective elasticity is measured by the
product of the density and the velocity of the elastic wave) the phase
changes by 7; while when the reflection takes place in going from an
elastically more rigid to a less rigid medium, the change of phase is zero.
Even in light waves there is reason ra believe that such phase changes
take place on reflection (cf. Sec. 2, Chapter XXVIII).

7. Stationary Waves. Wh?n a progressive wave in a medium is
reflected by a surface or barrier of some kind, reflection gives rise to a
wave ;n the opposite direction. Thus if one end of a string or rubber
hose is tied to a rigid support while the other end is shaken, in addition
to the wave traveling down the string from the hand, a wave traveling
back to the hand from the support is also observed. In the general
case of harmonic waves proceeding in opposite directions in a medium
a very interesting phenomenon can arise. In the first place we must
note that the resulting disturbance is the algebraic sum of the dis-
turbances in the two waves. If the disturbances are harmonic displace-
ments with the same frequency and amplitude we have

ti. = A cos 244
V
) f
la

k- = A cos 2w(vt +
V/
PX) f

(25)

. .
the plus and minus signs referring to the waves in the positive and nega-
tive directions respectively. The resultant displacement is

, 2rvxt = i+ + t_ = 2A cos 27rvt cos t
V

(26)
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if the indicated trigonometric operations are carried out. If we fix our
attention on some value of x, the displacement in general varies in time
with frequency v, but there are certain points at which no motion ever
takes place. These are the points for which

2iryz
cos

V
= 0 (27)

and where x therefore has the values

(2n + 1)V
z __ (28)

4y

n being any integer. The points corresponding to these values of x are
called nodal points or nodes. In Fig. 26.11 we have plotted the displace-
ment given in eq. 26 as a func-

E LI L2 L
tion of z for foursuccessive instants,
indicated by the numbers 1, 2, 3, 4
at the left side of the figure. Though
the four curves differ they all agree
in pa?sing through the points N1,
N2, N4, etc., and the displacement never differs from zero at these points:
they are the nodes. From (28) it follows that the distance between
successive nodes is V /2v, which, however, from eq. 21 is equal to X/2
or a half wave length. Evidently the motion fluctuates between the
extreme positions marked 1 and 4, the largest possible displacement
being 2A. This is attained periodically at intervals equal to P = 1/v
at points intermediate between the nodes, i.e., at L1, L3, etc. These

points are known as loops. Here, of course, cos
2 Tyx

= 1. The dis-

tance between successive loops is also equal to X/2.
The whole phenomenon we have been discussing is known as a sta-

tionary or standing wave. The production of such a wave affords a very
satisfactory method of estimating the velocity of the wave motion in

question, for, if the frequency is known and
p the distance between successive nodes in the

standing wave pattern is measured, the ye-
locity can at once be computed from eq. 21.

Fio. 26.12 For example, this can be done very nicely by
Melde's experiment (Fig. 26.12), in which a

string of length 1 has one end fastened to a prong of an electrically
driven tuning fork while the other end passes over a frictionless pulley
and terminates in a weight W. The frequency of the fork remaining
constant, one gets different standing wave patterns, i.e., different

Fie. 26.11



numbers of nodes, by altering the weight W (so changing the velocity
in accordance with eq. 16). The effect is very striking.

Let us consider a horizontal string of length / fastened rigidly at both
ends. When struck or plucked it becomes the seat of transverse sta-
tionary waves. Since the ends must be nodes the simplest possible
type of standing-wave pattern is that shown in (a) of Fig. 26.13, where
there is a loop in the center of the string and the motion fluctuates be-

tween the two extreme positions ACB and ADB.
4 It is clear that we have here X/2 = 1 orEt

c D E 1 = 21 (29)..t.D , ---__".- 13

-F (b)
corresponding to frequency4 --...."..)13(c)

V

21
(30)Fla. 26.13 is a= .

This is called the futhiamental mode of oscillation of the stretched string,
and (29) and (30) give the fundamental wave length and frequency
respectively. The next possible mode is shown in (b) of Fig. 26.13 with

x = 1, (31)

This is the first harmonic of the stretched string. The second harmonic
corresponds to the situation depicted in (c) with

x 3 ,
I, =

3V
(32)3 2/

The set of frequencies is = V /2l, v2 = 2V 121, v3 = 3V /2l , v. =
nV 121, , are the characteristic frequencies of the vibrating string.
Note that they increase proportionately to the natural numbers: the
harmonics are respectively 2, 3, 4, n times the fundamental
frequency.

We shall meet precisely the same type of stationary-wave phenomena
in connection with sound and light waves. They ate clearly independent
of whether the waves are transverse or longitudinal.

8. Interference of Waves. The production of standing or stationary
waves described in the pre-boas section is but one illustration of the com-
bination of progressive w..ves. There is no reason why we cannot en-
visage the passage of many harmonic progressive waves of different
frequency in varitan directions in a medium. To find the resultant
disturbance at any point we merely add algebraically the individual
disturbances. This resultant will vary periodically with the time (unless
indeed it happens to occur at a node). The combination of wave., to
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form a resultant wave is often termed superposition, but we can also
describe it by the term interference, the simplest :.ype of which is called
constructive and is illustrated by the superposition of harmonic waves
of the same frequency, traveling with the same velocity in the same
direction and having the same phase. In Fig. 26.14 we indicate two
such waves 1 and 2 traveling in the same direction and having slightly
different amplitudes. Their resultant is wave 3 of the sa.ne frequency

Fw. 26.14 Ftc. W.15

and velocity but of larger amplitude than either of the component waves.
A quite different situation is shown in Fig. 26.15, where the two waves
1 and 2 (here of the same amplitude) are precisely out of phase with each
other. This means that crest of one falls on trough of the other, and
vice versa, so that the resultant displacement is zero at all times every-
where. This is called destrudive interference.

A very interesting illustration of interference it, to be found in the
wave pattern produced when a plane harmonic water wave encounters
a rigid obstacle having two orifices through which the disturbance can
go. The situation corresponds to Fig. 26.16, where we represent the
obstacle by 00'. The approaching plane wave traveling upward toward
the obstacle can be represented by the traces of its successive wave
fronts on the plane of the diagram.

LsDotted lines such as TT' will represent
troughs (i.e., at every point of TT' the
displacement is a minimum at the same
time) while full lines like CC' indicate
crests. The distance between the lines
CC' and TT' is, of course, X/2. The
orifices are assumed to have dimensions
small compared with X. Then the dis- Ft]. 26.16

turbance will spread out from each opening in the form of semicircular
wave fronts as indicated in the picture, the full semicircles denoting
crests and the dotted ones troughs. The wave fronts from the two
orifices will overlap and interfere. Where crest falls on crest or trough
on trough, the interference is constructive and the displacement will be
large in magnitude. Where crest of one wave system falls on trough
of the other, the interference is destructive and the displacement is zero.
Hence there results the interesting crisscross pattern which can be
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readily observed on a water surface where circular or semicircular wave
fronts overlap. In the figure the line LL' is a line connecting points of
constructive interference, while MM' is a line connecting points of
destructive interference. We shall find this diagram very useful when
we discuss the interference of light waves.

So far our description of interference has assumed that the frequency
of the interfering waves is the same.
This need not be true. Consider
Fig. 26.17 which shows two har-
monic progressive waves 1 and 2,
where 2 has frequency double that of 1.
Suppose at the point A the waves

are in phase. Then in the neighborhood of B and D they are out of
phase. Hence the resultant wave produced by the superposition of 1
and 2 is 3, which corresponds to large displacement in the neighborhood
of A, C, and E but very small displacement around B and D, i.e., large
amplitude succeeds small amplitude in periodic succession. We note
that the frequency of t1.3 resultant disturbance is just the difference
between the frequencies of the components. It is called the beat fre-
quency of the components.

9. Diffraction. Among the very pretty experiments which can be
performed with water waves in a ripple tank is that in which a plane
wave meets an obstacle 00' parallel to the wave

T'C'
I 'front (Fig. 26.18). One might suppose that the

obstacle would allow the plane wave to pass above
I --1"

the line OA but completely cut it off in the Io 1
region below OA. That is, we might expect the
obstacle to produce a water wave shadow so that T C

Bno disturbance gets down into the region A00'
o'and all of it moves forward as a plane wave

beyond the obstacle. As a matter of fact this F G. 26.18

does not happen. Experiment indicates that in addition to the plane
waves in the region above OA there are some circular wave fronts
in the region below OA, i.e., some wave propagation in the direction OB:
the advancing wave acts as if it were able to bend around the obstacle.
This ability of a wave to bend around an obstacle is known as diffraction
and is an extremely significant property of waves of all kinds. It is not,
of course, restricted to harmonic waves. Experiment indicates, and we
shall later show indeed for light waves, that long-wave-length harmonic
waves can be more readily diffracted than short waves.

10. Polarization. An instructive experiment which can be per-
formed with transverse waves in a string or rubber hose consists in

FIG. 26.17



ax
dx. Hence the change in length of the original piece dx is dE

at
dx, or the change in length par unit length or strain is 4 = at as

ax dx az
given in (6). If the rod may be treated as an elastic solid, or better if
the stress and strain are within the elastic limit, we may use Hooke's
law (Sec. 3, Chapter XI) and write

F
Y

(7)

ax

where Y is Young's modulus. Now let us consider the actual motion
of any small element of length of the rod, say Ax, as indicated in the
figure. It is under tension, and the tension force at the left-hand
end is simply SF directed toward the left while that at the right-hand

end is SF +
oF

S ka directed toward the right, since we have to sup-
ax

pose that the tension changes with x and 8F /ex represents its rate of
change. Hence the net or resultant force on the element of length Az
appears as the difference of the two or

axA.Z.
ax (8)

We must now apply the fundamental equation of dynamics: force =
mass times acceleration. The mass of the element is pSka, where p
is the averaga density. The acceleration is 82E/8t2. Hence the funda-
mental equation of motion takes the form

OF ,92,E

A3Ax- = pax I
ax

or simplified

821;

8x P IP' (9)

195

Wave Motion and Acoustics

making the string pass through a narrow slot cut in a piece of cardboard
(cf. Fig. 26.19). If the lengthwise direction of the slot is parallel to
the direction of displacement in the string, the wave motion readily
passes through the slot (as, for example, through 8182 in the figure).
On the other hand, if the slot is perpendicular to the direction of dis-
placement (8384 in the figure), the wave motion fails to get through
the slot. In general, if the slot is placed at an angle with the direction
of displacement, only the component of the displacement parallel to the
slot gets through. If then a wave with arbitrary or changing displace-
ment direction encounters such a slot, when it emerges the displacement
will be parallel to the slot. We shall say that the wave becomes polar-
ized, and indeed in this case plane polarized, since the displacement then
lies continually in a plane containing the direction of propagation.
Evidently a slot like the one described can act as a plane polarizer for
transverse waves. At the same
time if a plane-polarized transverse
wave encounters such a slot, the slot
can act as an analyzer for the wave, A
since it will allow the wave through
with its original amplitude only for
a certain orientation.

We have emphasized throughout the discussion in the preceding
paragraph that the wave is transverse. It should be clear to the reader
that the effects described will be absent for longitudinal waves. This
provides an interesting test of the nature of particular types of wave
motion: if one can find no evidence for the polarization of a wave, it is
PlAstr that it must. hA Inncrituclinal On thA nfhar hand nhannmana

28.19
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V = 41.- (11)
P

For an illustration we recall that, for steel p = 7.8 grams/cm3, approx-
imately, and Y = 2.0 X 1012 dynes/cm2. Eq. 11 gives V = 5,000
meters/sec, approximately.

The same sort of analysis can be carried out for elastic waves of any
sort in arty material medium. Interestingly enough, it is found that
V is always expressible as the square root of the ratio of two factors, the
numerator representing an elasticity factor, e.g., an elastic constant or
combination of such, and the denominator an inertia factor, e.g., the
density as above in (11). We can therefore say qualitatively that the
velocity of elastic waves in very dense media which are not very elastic
is smaller than that in more elastic, lighter media. We shall now give
a few illustrations, quoting results without working them out in all cases.

For a torsional wave (cf. Sec. 1) in a bar or rod, V =14-1/p, where
0 = shear modulus or rigidity (cf. Sec. 3, Chapter XI).

For a compressional or "squeeze " wave in a fluid medium V =
, where pc is the excess pressure brought about in the fluid by the

compressional disturbance and pc is the associated excess density. Thus
we have to visualize the passage of such a wave through a fluid as the
motion of a "squeeze," i.e., a state of compression, through the fluid.
As it progresses, the pressure at any particular point rises momentarily
above its equilibrium value and then falls below it. As the pressure
changes so does the density and indeed in the same direction. The rela-
tion between the changes in pressure and density can be obtained from
a knowledge of the elastic propertiPs of the fluid. Let the fluid be a
liquid with bulk modulus k. Then a change of pressure Alp is associated
with a change of volume Ay through the expression (cf. Sec. 3, Chap-
ter XI).

tp
Aviv

= k. (12)

Note that we are here using v for volume to avoid confusion with V,

Many aspects of the musk produced by instruments,
such as tone, consonance, dissonance, and scales, are
closely related to physical laws.

16 Musical Instruments and Scales

Harvey E. White

1940

MUSICAL instruments are often classified under one of the follow-
ing heads: strings, winds, rods, plates, and bells. One who is more or
less familiar with instruments will realize that most of these terms
apply to the material part of each instrument set into vibration when
the instrument is played. It is the purpose of the first half of this
chapter to consider these vibrating sources and the various factors gov-
erning the frequencies of their musical notes, and in the second part
to take up in some detail the science of the musical scale.

16.1. Stringed Instruments. Under the classification of strings
we find such instruments as the violin, cello, viola, double bass, harp,
guitar. and piano. There are two principal reasons why these instru-
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But Ap = pe and Ap = pc in the meaning we have just given to these
quantities. Hence

pe k

Pe P

and the velocity of a compressional wave in a liquid becomes

V= (13)

Thus for water p = 1 gram/cm3, k = 2.14 X 1010 dynes/cm2, whence
V = 1,460 meters/sec.

For a compressional wave in a solid not in the form of a long thin rod,
it can be shown that the velocity has the form

4.
=

k 12

P
(14)

Here both shear and bulk moduli enter into the velocity of a compres-
sional wave.

A compressional wave in a gas has already been treated in Sec. 4,
Chapter XVI, and we shall merely recall for reference that V = IVT/17,

reduces in this case to

(15)

where p and p are the equilibrium or average pressure and density,
respectively, and y is the ratio of the specific heat at constant pressure
to that at constant volume (y = 1.41 for air). Note here how the
quantity 7p plays the role of elasticity factor for a gas.

Accurate measurements with vibrating strings, as well as theory,
show that the frequency n is given by the following formula:

_1 m,2L (16a)

where L is the distance in centimeters between two consecutive nodes,
F is the tension on the string in dynes, and m the mass in grams of one
centimeter length of string. The equation gives the exact pitch of a
string or the change in pitch due to a change in length, mass, or tension.
If the length L is doubled the frequency is halved, i.e., the pitch is
lowered one octave. If in is increased n decreases, and if the tension F
is increased n increases. The formula shows that to double the fre-
quency by tightening a string the tension must be increased fourfold.

;undamental

zn 1st overtone

3n 5C:=044=> 2nd overtone

4n E4:==s4eig 3rd overtone

6n E<A1'44=:!>4=:=>cr:ne: 5th nvertnma



UCULICLIMI VI eq. .ito 18 worth going through,
though it follows the same general scheme as that used
in deriving eq. 11. In Fig. 26.5 a small portion of the

Fio 28 5 string ds, with mass p (18, is shown in its displaced condi-
tion (displacement f) with the tension r acting along it

at both ends. To write the equation of motion we must equate the net
vertical force acting on the element to the mass times the acceleration.
Since we are assuming small transverse displacements from equilibrium
we can replace ds by its projection dx on the ' quilibrium position of the
string without serious error. The vertical ,omponent of the tension

at the end A is then approximately r
ox

where the derivative is taken

at this point. (We assume 6t/ox = 4/3s, approximately.) At B we

axe
have r r --2 dx. The net upward s r dx. The equa-
tion

ox2 (33;3

tion of motion then becomes

a2t
a2E

Tz-2, dx =
at

Or

v= 11'32 a2E
at2 axe

Waves on the surface of water or other liquids are rather complicated
affairs. If they are merely ripples, they are mainly due to surface
tension. On the other hand, if they are primarily due to gravity and
the water depth is not too great the velocity comes out to be

V = 9h, (17)

where g is the acceleration of gravity and h is the depth of the water.
For other types of water waves the reader must consult a treatise on
theoretical physics.
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frequency and several overtones simultaneously. This is accomplished
by plucking or bowing the string vigorously. To illustrate this, a dia-
gram of a string vibrating with its fundamental and first overtone is
shown in Fig. 16C. As the string vibrates with a node at the center
and a frequency 2n, it also .doves up and down as a whole with the
fundamental frequency n and a node at each end.

It should be poirited out that a string set into vibration with nodes
and loops is but an example of standing waves, see Figs. 14K and 14L.
Vibrations produced at one
end of a string send a con-
tinuous train of waves along
the string to be reflected back
from the other end. This is
true not only for transverse
waves but for longitudinal or torsional waves as well. Standing waves
of the latter two types can be demonstrated by stroking or twisting one
end of the string of a sonometer or violin with a rosined cloth.

16.3. Wind Instruments. Musical instruments often classified
as "wind instruments" are usually divided into two subclasses, "wood-

.winds" and "brasses." Under the-heading of wood-winds we find
such instruments as the flute, piccolo, clarinet, bass clarinet, saxophone,
bassoon, and contra bassoon, and under the brasses such instruments as
the French horn, cornet, trumpet, tenor trombone, bass trombone, and
tuba (or bombardon).

In mrarfirally all wind inCfninvanft fhp cniirrp of cn,in.l ;.

FIG. 16CString vibrating with its fundamental
and first overtone simultaneously.
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proper length, standing waves will be set up and the air column will
resonate to the frequency of the tuning fork. In this experiment the
proper length of the tube for the closed pipes is obtained by slowly
pouring water into the cylinder and listening for the loudest response.
Experimentally, this occurs at several points as indicated by the first
three diagrams; the first resonance occurs at a distance of one and one-
quarter wave-lengths, the second at three-quarters of a wave-length,
and the third at one-quarter of a wave-length. The reason for these

(a) (b) (c) (d) 0) (f)m= .4= = -.= ..= -.=
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:
1

A "

0

Ly_ 7-
N open pipes

closed pipes
Fm. 16DThe column of air in a pipe will resonate to sound of a given pitch if the length

of tne pipe is properly adjusted.

odd fractions is that only a node can form at the closed end of a pipe
and a loop at an open end. This is true of all wind instruments.

For open pipes a loop forms at both ends with one or more nodes
in between. The first five pipes in Fig. 16D are shown responding to a
tuning fork of the same frequency. The sixth pipe, diagram (f),. is
the same length as (d) but is responding to a fork of twice the fre-
quency of the others. This note is one octave higher in pitch. In
other words, a pipe of given length can be made to resonate to various
frequencies. Closed pipe (a), for example, will respond to other
forks whose waves are of the right length to form a node at the bottom,
a loop at the top and any number of nodes in between.

The existence of standing waves in a resonating air column may be
demonstrated by a long hollow tube filled with illuminating gas as
shown in Fig. 16E. Entering through an adjustable plunger at the left
the gas escapes through tiny holes spaced at regular intervals in a row
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along the top. Sound waves from an organ pipe enter the gas column
by setting into vibration a thin rubber sheet stretched over the right-
hand end. When resonance is attained by sliding the plunger to the
correct position, the small gas flames will appear as shown. Where
the nodes occur in the vibrating gas column the air molecules are not
moving, see Fig. 14L (b) ; at these points the pressure is high and the
flames are tallest. Half way between are the loops; regions where the
molecules vibrate back and forth with large amplitudes, and the flames
are low. Bernoulli's principle is chiefly responsible for the pressure

gas flames
organ pipe

t.11.1.6101.0-10-A-1
f .-sf.:::-7;.::::::;* i: ....::-:.,-.T.I.:4

4:...,,,,,..... . .... :...1,...4.
...v::....*.--.... . :4:-......11,( N L N

illuminating gas
L Al L N 1.

airblast
FIG. 16EStanding waves in a long tube containing illuminating gas.

differences, see Sec. 10.8, for whew the velocity of the molecules is
high the pressure is low, and where the velocity is low the pressure
is high.

The various notes produced by most wind instruments are brought
about by varying the length of the vibrating air column. This is illus-
trated by the organ pipes in Fig. 16F. The longer the air column the
lower the frequency or pitch of the note. In a regular concert organ
the pipes vary in length from about six inches for the highest note to
almost sixteen feet for the lowest. For the middle octave of the musical
scale the open-ended pipes vary from two feet for middle C to one
foot for Cl one octave higher. In the wood-winds like the flute the
length of the column is varied by openings in the side of the instru-
ment and in many of the brasses like the trumpet, by means of valves.
A valve is a piston which on being pressed down throws in an addi-
tional length of tube.

The frequency of a vibrating air column is given by the following
formula,

1 IPn=
2
L NK

d-
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where L is the length of the air column, K is a number representing
the compressibility of the gas, p is the pressure of the gas, and d is its
density. The function of each factor in this equation has been verified
by numerous experiments. The effect of the length L is illustrated in
Fig. 16F. To lower the frequency to half-value the length must be
doubled. The effect of the density of a gas on the pitch of a note may
be demonstrated by a very interesting experiment with the human

Cis
E

1!)

lr

F

-Er
Re Ni A'°'

La Ti Do
Do

16FOrgan pipes arranged in a musical scale. The longer the pipe the lower is
its fundamental frequency and pitch. The vibrating air column of the flute is terminated
at various points by openings along the tube.

voice. Voice sounds originate in the vibrations of the vocal cords in
the larynx. The pitch of this source of vibration is controlled by mus-
cular tension on the cords, while the quality is determined by the size
and shape of the throat and mouth cavities. If a gas lighter than air
is breathed into the lungs and vocal cavities, the above equation shows
that the voice should have a higher pitch. The demonstration can be
best and most safely performed by breathing helium gas, whose effect
is to raise the voice about two and one-half octaves. The experiment
must be performed to be fully appreciated.

16.4. Edge Tones. When wind or a blast of air encounters a
small obstacle, little whirlwinds are formed in the air stream behind
the obstacle. This is illustrated by the cross-section of a flue organ
pipe in Fig. 16G. Whether the obstacle is long, or a small round
object, the whirlwinds are formed alternately on the two sides as shown.
The air stream at B waves back and forth, sending a pulse of air first

I:t.. I.;t- F
6
A

C
D

-
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FIG. 14LIllustrating standing waves as they are produced with (a) the longitudinal
waves of a spring, (b) the longitudinal waves of sound in the air, and (d) the transverse
waves of a rope. (c) and (e) indicate the direction of vibration at the loops.
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up one side and then the other. Although the wind blows through
the opening A as a continuous stream, the separate whirlwinds going
up each side of the obstacle become periodic shocks to the surrounding
air. Coming at perfectly regular intervals these pulses give rise to a
musical note often described as the whistling of the
wind. These notes are called "edge tones."

The number of whirlwinds formed per second,
and therefore the pitch of the edge tone, increases
with the wind velocity. When the wind howls
through the trees the pitch of the note rises and
falls, its frequency at any time denoting the velocity
of the wind. For a given wind velocity smaller
objects give rise to higher pitched notes than large
objects. A fine stretched wire or rubber band when
placed in an open window or in the wind will be set
into vibration and give out a musical note. Each
whirlwind shock to the air reacts on the obstacle
(the wire or rubber band), pushing it first to one
side-ind then the other. These are the pushes that
cause the reed of a musical instrument to vibrate
and the rope of a flagpole to flap periodically in the
breeze, while the waving of the flag at the top of a
pole shows the whirlwinds that follow each other
along each side.

These motions are all "forced vibrations" in that
they are forced V the wind. A stretched string or
the air coltunnin an organ pipe has its own natural
frequency of vibration which may or may not coin-
cide with the frequency of the edge tone. If they do
coincide, resonance will occur, the string or air
column will vibrate with a large amplitude, and a loud sound will result.
If the edge tone has a different frequency than the fundamental of the
string, or air column, vibrations will be set up but not as intensely as
before. If the frequency of the edge tone of an organ pipe, for example,
becomes double that of the fundamental, and this can be obtained by a
stronger blast of cit., the pipe will resonate to double its fundamental
frequency qnd give out a note one octave higher.

16.5. Vibrating Rods. If a number of small sticks are dropped
upon the floor the sound that is heard is described as a noise. If one

tair
FIG. 16GA steady

stream of air blown
across the lip of an
organ pipe sets up
whirlwinds along both
sides of the partition.
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stick alone is dropped one would also describe the sound as a noise,
unless, of course, a set of sticks of varying lengths are arranged in
order of length and each one dropped in its order. If this is done, one
notices that each stick gives rise to a rather definite musical note and
the set of sticks to a musical scale. The use of vibrating rods in the
design of a musical instrument is to be found in the xylophone, the
marimba, and the triangle. Standing waves in a rod, like those in a
stretched string, may be any one of three different kinds, transverse,
longitudinal, and torsional. Only the first two of these modes of vi-
bration will be treated here.

Transverse waves in a rod are usually set up by supporting the rod
at points near each end and striking it a blow at or near the center. As

aftailipeos

(a)

Ftc. 16HThe bars of the marimba or xylophone vibrate transversely with nodes near
each end.

illustrated in Fig. 16H(a) the center and ends of the rod move up and
down, forming nodes at the two supports. Like a stretched string of
a musical instrument, the shorter the rod the higher is its pitch, and
the longer and heavier the rod the lower is its frequency of vibration
and pitch.

The xylophone is a musical instrument based upon the transverse
vibrations of wooden rods of different lengths. Mounted as shown in
Fig. 16H(b) the longer rods produce the low notes and the rhorter
ones the higher notes. The marimba is essentially a xylophone with
a long, straight hollow tube suspended vertically under each rod. Each
tube is cut to such a length that the enclosed air column will resonate
to the sound waves sent out by the rod directly above. Each resonator
tube, being open at both ends, forms a node at its center.

Longitudinal vibrations in a rod may be set up by clamping a rod
at one end or near the center and stroking it with a rosined cloth.
Clamped in the middle as shown in Fig. 16I the free ends of the rod
move back and forth vihile the middle is held motionless, maintaining
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a node at that point. Since the vibrations are too small to be seen
with the eye a small ivory ball is suspended near the end as shown.
The bouncing of this ball is indicative of the strong longitudinal vi-
brations. This type of vibra-
tion in a rod is not used in rode
musical instruments.

16.6. Vibrating Plates.
Although the drum or the r

16IDiagram of a rod vibrating longitu.cymbals should hardly dinally with a node at the center.
called musical instruments
they are classified as such and made use of in nearly all large orchestras
and bands. The noise given out by a vibrating drumhead or cymbal
plate is in general due to the high inte:,sity of certain characteristic
overtones. These overtones in turn are due to the very complicated
modes of vibration of the source.

Cymbals consist of two thin metal disks with handles at the centers.
Upon being struck together their edges are set into vibration with a
clang. A drumhead, on the other hand, is a stretched membrane of

(a) (b)

FIG. 16JChladni's sand figures showing the nodes and loops of (a) a vibrating drum-
head (clamped at the edge) and (b) a vibrating cymbal plate (clamped at the center).

leather held tight at the periphery and is set into vibration by being
struck a blow at or near the center.

To illustrate the complexity of the vibrations of a circular plate,
two typical sand patterns are shown in Fig. 16J. The sand pattern
method of studying the motions of plates was invented in the 18th
century by Chladni, a German physicist. A thin circular metal plate
is clamped at the center C and sand sprinkled over the top surface.
Then while touching the rim of the plate at two points N1 and N2 a
violin bow is drawn down over the edge at a point L. Nodes are
formed at the stationary points N1 and N2 and loops in the regions of
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Li and L2. The grains of sand bounce away from the loops and into
the nodes, the regions of no motion. At one instant the regions marked
with a + sign all move up, while the regions marked with a sign
all move down. Half a vibration later the + regions are moving
down and the regions up. Such diagrams are called Chladni's sand
figures.

With cymbal plates held tightly at the center by means of handles
a node is always formed there, and loops are always formed at the
periphery. With a drumhead, on the other hand, the periphery is
always a node and the center is sometimes but not always a loop.

16.7. Bells. In some respects a bell is like a cymbal plate, for
when it is struck a blow by the clapper, the rim in particular is set

i

Fm. 16KExperiment illustrating that the rim of a bell or glass vibrates with nodes
and loops.

vibrating with nodes and loops distributed in a symmetrical pattern
over the whole surface. The vibration of the rim is illustrated by a
diagram in Fig. 16K(a) and by an experiment in diagram (b). Small
cork balls are suspended by threads around and just touching the out-
side rim of a large glass bowl. A violin bow drawn across the edge
of the bowl will set the rim into vibration with nodes at some points
and loops at others. The nodes are always even in number just as they
are in cymbal plates and drumheads, and alternate loops move in while
the others move out.

Strictly speaking, a bell is not a very musical instrument. This is
due to the very complex vibrations of the bell surface giving rise to so
many loud pvertones. Some of these overtones harmonize with the
fundamental while others are discordant.

16.8. The Musical Scale. The musical scale is based upon the
relative frequencies of different sound waves. The frequencies are so
chosen that they produce the greatest amount of harmony. Two notes
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are said to be harmonious if they are pleasant to hear. If they are not
pleasant to hear they are discordant.

The general form of the musical scale is illustrated by the symbols,
letters, terms, and simple fractions given in Fig. 16L.

The numbers indicate that whatever the frequency of the tonic C,
the frequency of the octave Cl will be twice as great, that G will be
three halves as great, F four thirds as great, etc. These fractions below

0
-a-

C 0 EF6 ABC:
tow second ar; fourth fifth s jg !a :1;h octavo

r3 ft 54 %
16LDiagram giving the names, and fractional ratios of the frequencies, of the

different tone intervals on the diatonic musical scale.

0 0 0

each note are proportional to their frequencies in whatever octave of
the musical scale the notes are located.

The musical pitch of an orchestral scale is usually determined by
specifying the frequency of the A string of the first violin, although
sometimes it is given by middle C on the piano. In the history of
modern music the standard of pitch has varied so widely and changed
so frequently that no set pitch can universally be called standard.*
For many scientific purposes the A string of the violin is tuned to a
frequency of 440 vib/sec, while in a few cases the slightly different
scale of 256 vib/sec is used for the tonic, sometimes called middle C.

16.9. The Diatonic Scale. The middle octave of the diatonic
musical scale is given in Fig. 16M assuming as a standard of pitch
A = 440. The vocal notes usually sung in practicing music are given
in the second row. The ratio numbers are the smallest whole numbers
proportional to the scale ratios and to the actual frequencies.

The tone ratios given at the bottom of the scale indicate the ratio
between the frequencies of two consecutive notes. Major tones have
a ratio of 8 : 9, minor tones a ratio of 9 : 10, and diatonic semitones a

* For a brief historical discussion of normal standards of pitch the student
is referred to the book The Science of Musical Sounds" by D. C. Miller. For
other treatments of the science of music see "Sound" by Capstidc, "Science and
Music" by James Jeans, and "Sound and Music" by J. A. Zahn.
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ratio 15 : 16. (The major and minor tones on a piano are called
whole tones and the semitones are called half tones.)

Other tone intervals of interest to the musician are the following:

Interval Frequency Ratio Examples

Octave 1 : 2 CCt, DD1, EEt
Fifth 2 : 3 CG, EB, GD1
Fourth 3 : 4 CF, EA, GO
Major third 4 : 5 CE, FA, GB
Minor third 5 : 6 EG, ACt
Major sixth.. 3 : 5 CA, DB, GE1
Minor sixth 5 : 8 ECI, AFt

A scientific study of musical notes and tone intervals shows that
harmony is based upon the frequency ratios between notes. The
smaller the whole numbers giving the ratio between the frequencies of

scale notes
vocal notes

ratio numbers

frequencies

scale ratios
tone ratios

01 01 v
ca

.0 Ca .ca
L. 1

Z esv .%
to

CDE
Do Re Mi

FGA
Fa So La

SC101
71 Do Re

24 27 30 32 36 40 45 48 54
264 297 330 352 396 440 495 528 594

I Ye .r4 11,3 3/2 '5Z9 /5/8 2 9/4
8 :9 9:10 15 16 8 :9 9:10 6.9 15 16 8 9

16MThe diatonic musical scale illustrated by the middle octave with C as the
tonic and 4 = 440 as the standard pitch.

two notes the more harmonious, or consonant, is the resultant. Under
this definition of harmony the octave, with a frequency ratio of 1 : 2,
is the most harmonious. Next in line comes the fifth with a ratio 2 : 3,
followed by the fourth with 3 : 4, etc. The larger the whole numbers
the more discordant, or dissonant, is the interval.

Helmholtz was the first to give a physical explanation of the various
degrees of consonance and harmony of these different intervals. It is
based in part upon the beat notes produced by two notes of the interval.

As shown by Eq. (154) the beat frequency between two notes is
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equal to their frequency difference. Consider, for example, the two
notes C and G of the middle octave in Fig. 16M. Having frequencies
of 264 and 396, the beat frequency is the difference, or 132. This is a
frequency fast enough to be heard by the ear as a separate note, and in
pitch is one octave below middle C. Thus in sounding the fifth, C and
G, three harmonious notes are heard, 132, 264, 396. They are har-
monious because they have ratios given by the smallest whole numbers
1 : 2 : 3.

Harmonious triads or chords are formed by three separate notes
each of .which forms a harmonious interval with the other two, while
the highest and lowest notes are less than an octave apart. Since there
are but six such triads they are shown below.

Harmonic Triads or Chords Frequency Ratio Example
Major third followed by minor third C E G4 : 5 : 6

fourth 3 : 4 : 5 C F A
Minor third major third. 5 : 6, 4: 5 E G B
Minor third " fourth $ : 6, 3 : 4 E G Ct
Fourth " major third 4: 5, 3 4 C E A.Fourth " minor third 3 : 4, 5 : 6 E A CI

Consider the beat notes or difference tones between the various pairs
of notes in the second triad above. The notes themselves have fre-
quencies C. 264, F = 352, and A = 440. The difference tones
F-C = 88, A-F = 88, and A-C =176. Being exactly one and two
octaves below C, one of the notes of the triad, they are in harmony
with each other. Grouping the first two beat frequencies as a single
note, all the frequencies heard by the ear have the frequencies 88,
176, 264, 357, and 440. The frequency ratios of these notes are
1 : 2 : 3 : 4 : f, the first five positive whole numbers.

16.10. The Chromatic Scale. Contrary to the belief of many
people the sharp of one note and the flat of the next higher major or
minor tone are not of the same pitch. The reason for this false im-
pression is that on the piano the black keys represent a compromise.
The piano is not tuned to the diatonic scale but to an equal tempered
scale. Experiments with eminent musicians, and particularly violinists,
have shown that they play in what is called pure intonation, that is, to
a chromatic scale and not according to equal temperament as will be
described in the next section.

On the chromatic scale of the musician the ratio between the fre-
quency of one note and the frequency of its sharp or flat is 25 : 24.
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This ratio is just the difference between a diatonic semitone and a minor
tone, Le.,1516-4-9/ 0=--- 25/24. The actual frequencies of the various
sharps and flats for the middle octave of the chromatic scale, based
upon A = 440, are shown above in Fig. 16N. Cs for example, has

C'06 DffrEll F*G6 G#A6 OBI'
27S 285.1 309.4 316.8 3667 3802 4125 4224 458 3 4752Cii DilE Fit Gil Ali 8 C1

'major tone !minor tonelrni eilmajor tone 'minor to. nelmajor tone Isteomnd

264 297 330 352 395 440 495 528

C 0 E F G A B C1
Iwholeitone lwhola ione half [whole ;tone lwholeitone Iwholeitone !half I

,

261.6 1 293.7 I 329.6 3492 1 392 1 440 1 493.9
2772 311.1 370 415.3 466.1 523.2
C# Oh ellEb F.61' ate' A* 8 b

FIG. MNScale diagrams showing the diatonic and chromatic scale above and the equal
tempered scale below.

a frequency of 275 whereas Db is 285.1. This is a difference of
10 vib/sec, an interval easily recognized at this pitch by most every-
one. (The sharps and flats of the semitone intervals are not shown.)

16.11. The Equal Tempered Scale. The white keys of the
piano are not tuned to the exact frequency ratios of the diatonic scale;

they are tuned to an equal
tempered scale. Each octave
is divided into twelve equal
ratio intervals as illustrated
below in Fig. 16N. The
whole tone and half tone in-
tervals shown represent the
white keys of the piano, as
indicated in Fig. 160, and
the sharps and flats represent
the black keys. Including
the black keys, all twelve
tone intervals in every octave

are exactly the same. The frequency of any note in the equal tempered
scale turns out to be 6 percent higher than the one preceding it. , More
accurately, the frequency of any one note multiplied by the decimal

2771 311.0 .37C.1415.5 46.4

black
keys

white
keys

261.6 193.7 329.6 3492 392 440 493.9 523.2

FIG. 160The equal tempered scale of the
piano illustrating the frequencies of the middle
octave based upon 4 = 440 as the standard pitch.
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1.05946 gives the frequency of the note one-half tone higher. For
example, A= 440 multiplied by 1.05946 gives As or Bb as 466.1 vib/
sec. Similarly, 466.1 X 1.05946 gives 493.9.

The reason for tuning the piano to an equal tempered scale is to
enable the pianist to play in any key and yet stay within a given pitch
range. In so doing, any given composition can be played within the
range of a given person's voice. In other words, any single note can
be taken as the tonic of the musical scale.

Although the notes of the piano are not quite as harmonious as if
they were tuned to a diatonic scale, they are not far out of tune. This
can be seen by a comparison of the actual frequencies of the notes of
the two scales in Fig. 16N. The maximum differences amount to about
1 percent, which for many people is not noticeable, particularly in a mod-
ern dance orchestra. To the average musician, however, the difference is
too great to be tolerated, and this is the reason most symphony orchestras
do not include a piano. The orchestral instruments are usually tuned
to the A string of the first violin and played according to the chromatic
and diatonic scale.

16.12. Quality of Musical Notes. Although two musical notes
have the same pitch and intensity they may differ widely in tone quality.
Tone quality is determined by the number and intensity of the over-
tones present. This is illustrated by an examination either of the vi-
brating source or of the sound waves emerging from the source. There
are numerous experimental methods by which this is accomplished.

A relatively convenient and simple demonstration is given in
Fig. 16P, where the vibrating source of sound is a stretched piano
string. Light from an arc lamp is passed over the central section of
the string which, except for a small vertical slot, is masked by a screen.
As the string vibrates up and down the only visible image of the string
is a very short section as shown at the right, and this appears blurred.
By reflecting the light in a rotating mirror the section of wire draws
out a wave W on a distant screen.

If a string is made to vibrate with its fundamental alone, its own
motion or that of the emitted sound waves have the form shown in
diagram (a) of Fig. 16Q. If it vibrates in two segments or six seg-
ments (see Fig. 16B) the wave forms will be like those in diagrams (b)
and (c) respectively. Should the string be set vibrating with its fun-
damental and first overtone simultaneously, the wave form will appear
something like diagram (d). This curve is the sum of (a) and (b)
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and is obtained graphically by adding the displacement of correspond-
ing points. If in addition to the fundamental a string vibrates with

vibrating string
rotating

mirror

FIG. 16PDiagram of an experiment demonstrating the vibratory motion of a stretched
string.

the first and fifth overtones the wave will look like diagram (e). This
is like diagram (d) with the fifth overtone added to it.

It is difficult to make a string vibrate with its fundamental alone.
As a rule there are many overtones present. Some of these overtones

(a)

'.v%Azi'v'v'svW
fundamental

1st overtone

(c) . - - -- - 5th overtone

(d)

(e)

(a) #(b)

(a)*(b)t(c)

Fin. 16QIllustrating the form of the sound waves resulting from the addition of over-
tones to the fundamental.

harmonize with the fundamental and some do not. Those which har-
monize are called harmonic overtones, and those which do not are
called anharmonic overtones. If middle C. 264 is sounded with its
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first eight overtones, they will have 2, 3, 4, 5, 6, 7, and 8 times
264 vib/sec. These on the diatonic scale will correspond to notes
Cl, Gl, C2, E2, G2, X, and C3. All of these except X, the sixth over-
tone, belongs to some harmonic triad. This sixth overtone is anhar-
monic and should be suppressed. In a piano this is accomplished by
striking the string one-seventh of its length from one end, 'thus pre-
venting a node at that point.

16.13. The Ranges of Musical Instruments. The various octaves
above the middle of the musical scale are often labeled with numerical
superscripts as already illustrated, while the octaves below the middle
are labeled with numerical subscripts.

The top curve in Fig. 16Q is typical of the sound wave from a
tuning fork, whereas the lower one is more like that from a violin.
The strings of a violin are tuned to intervals of the fifth, G1.198,
D. 297, A = 440, and El --, 660. The various notes of the musical
scale are obtained by touching a string at various points, thus shorten-
ing the section which vibrates. The lowest note reached is with the
untouched G1 string and the highest notes by the El string fingered
about two-thirds of the way up toward the bridge. This gives the
violin a playing range, or compass, of 31/2 octaves, from G1 =-_ 198 to
C3=-- 2112.

The viola is slightly larger in size than the violin but has the same
shape and is played with slightly lower pitch and more sombre tone
quality. Reaching from C1 to C2, it has a range of three octaves.

The cello is a light bass violin which rests on the floor, is played
with a bow, has four strings pitched one octave lower than the viola,
C2, G2, D1, and Al, and has a heavy rich tone quality. The double
bass is the largest of the violin family, rests on the floor and is played
with a bow. The strings are tuned to two octaves below the viola and
one octave below the cello. In modern dance orchestras the bow is
often discarded and the strings are plucked with the fingers.

Of the wood-wind instruments the flute is nearest to the human
voice. It consists essentially (see Fig. 16R) of a straight narrow tube
about 2 feet long and is played by blowing air from between the lips
across a small hole near the closed end. The openings along the tube
are for the purpose of terminating the vibrating air column at various
points. See Fig. 16F. With all holes closed a loop forms at both
ends with a node in the middle. See Fig. 16D(d). As each hole is
opened one after the other, starting from the open end, the vibrating
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air column with a loop at the opening grows shorter and shorter, giving
out higher and higher notes. To play the scale one octave higher, one
blows harde: to increase the frequency of the edge tones and set the
air column vibrating, as in Fig. 16D(e), with three loops and two
nodes. Starting at middle C the flute can be extended in pitch for two
octaves, up to C2. The piccolo is a small flute, 1 foot long, and sings
one octave higher. The tone is shrill and piercing and the compass
its Cl to A2.

The oboe is a melodic double-reed keyed instrument, straight and
about 2 feet long. It has a reedy yet beautiful quality, and starting at

FIG. 16RMusical instruments. Brasses: (a) horn, (b) bugle, (c) cornet, (d) trombone.
Wood-winds: (e) flute, (f) oboe, and (g) clarinet.

B1 has a range of about two octaves. The clarinet, sometimes called
the violin of the military band (see Fig. 16R), is a single-reed instru-
ment about 3 feet long. It has a range of over three octaves starting
at El. The bass clarinet is larger than the clarinet, but has the same
shape and plays one octave lower in pitch.

The bassoon is a bass double-reed keyed instrument about 4 feet
long. The tone is nasal and the range is about two octaves starting
at Bb3.

The horn is a coiled brass tube about 12 feet in length (see Fig. 16R)
but interchangeable according to the number of crooks used. It has
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a soft mellow tone and starting at C2 has a range of three octaves.
The cornet, not usually used in symphony orchestras (see Fig. 16R) , is
a coiled conical tube about 41/2 feet long with three valves. It has a
mellow tone starting at middle .', and extends for two octaves. The
trumpet is a brass instrument having a similar shape as, and slightly
larger than, the cornet. Having three valves, *it extends to two octaves
above middle C. The purpose of the valves is to vary the length of
the vibrating air column.

The trombone is a brass instrument played with a slide, is a conical
tube about 9 feet long when straightened (see Fig. 16R), and has a
tone range from F2 to C'. Since the length of the vibrating air column
can be varied at will it is easily played to the chromatic scale. The
tuba is the largest of the saxhorns and has a range from F3 to F1.

_.......
sound

A

Fro. 16SDiagram of a phonodeik. An instrument for observing the form of sound waves.

The bugle. (see Fig. 16R) is not capable of playing to the musical
scale but sounds only certain notes. These notes are the harmonic
overtones of a fundamental frequency of about 66 vibrations per sec-
ond. With a loop at the mouthpiece, a node in the center, and a loop
at the flared end, this requires a tube 8 feet long. The second, third,
fourth, and fifth overtones have the frequencies 66 X 3 = 198, 66 X
4 r.---: 264, 66 X 5 = 330, and 66 X 6 = 396 corresponding to G1,
C, E, and G, the notes of the bugle. By making the lips vibrate to
near these frequencies the air column is set resonating with 3, 4, 5, or
6 nodes between the two open ends.

16.14. The Phonodeik. The phonodeik is an instrument designed
by D. C. Miller for photographing the minute details and wave forms
of all audible sounds. The instrument consists of a sensitive diaphragm
D (see trig. 16S), against which the sound waves to be studied are
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allowed to fall. As the diaphragm vibrates back and forth under the
impulses of the sound waves the thread T winds and unwinds on the
spindle S, turning the tiny mirror M up and down. A beam of light
from an arc lamp A and lens L is reflected from this mirror onto a ro-
tating mirror RM. As RM spins around the light sweeps across a dis-
tant screen, tracing out the sound wave. The trace may be either pho-
tographed or observed directly on the screen. Persistence of vision
enables the whole curve to be seen for a fraction of a second.

Several sound curves photographed by Miller are redrawn in
Fig. 16T. In every graph except the one of the piano, the sound is

iPUflute

hasso mice

voice Vowel -0°

I .1'111
ill, iiiIIllpiti..

horn sl piano

16TVarious types of sound waves in music as observed with a phonodeik or cathode
ray oscillograph.

maintained at the same frequency so that the form of each wave, no
matter how complex, is repeated the same number of times. The
tuning fork is the one instrument which is readily set vibrating with
its fundamental alone and none of its harmonics. Although each
different instrument may sound out with the same note, that is, the
same fundamental, the various overtones present and their relative
loudness determines the quality of the note identified with that
instrument.

QUESTIONS

1. Name the five classes of musical instruments and give at least one example
of each.

2. What three factors determine the fundamental frequency of a vibrating
string? How does the frequency change as each of these factors is changed?



3. What four factors determine the fundamental frequency of a vibrating air
column? How does the frequency change as each of these factors is changed?

4. Define or explain each of the following: (a) fundamental frequency, (b)
overtones, (c) harmonics, (d) edge tones, (e) anharmonic overtones.

5. Diagram one octave of the diatonic musical scale showing (a) scale notes,
(b) vocal notes, (c) ratio numbers, (d) frequencies, (e) scale ratios, and
(f) tone ratios.

6. What is the essential difference between the diatonic and the even tempered
musical scales?

7. Illustrate each of the following' musical intervals by giving the scale notes
and frequency ratios: (a) octave, (b) fifth, (c) fourth, (d) major third,
(e) minor third, (f) major sixth, (g) minor sixth, (h) major seventh,
(i) major tone, (j) minor tone, and (k) semitone.

8. Briefly explain the chromatic scale.

PROBLEMS

1. A piano string 100 cm long, with a mass of 0.1 gm per cm length, is under
a tension of forty million dynes. Find the fundamental frequency.

2. Find the tension in the A string of a violin assuming the length to be 50 cm
and the mass per cm length of string to be 0.04 gm.

3. If both ends of an organ pipe, 4 ft long, are open find its fundamental
frequency.

4. Calculate the frequencies of the notes on the diatonic musical scale of
Fig. 16M, for (a) the first octave above, and (b) the first octave below the
one shown.

5. Give the frequencies.of the first eight harmonic overtones and the first
four anharmonic overtones to middle C having a frequency of 264 vib/sec.
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The four members of the violin family have changed very
little in hundreds of years. Recently, a group of musi-
cians and scientists have constructed a "new" string
family.

17 Founding a Farm./ of Fiddles

Car leen M. Hutchins

1967

New measurement techniques combined with recent acoustics research enable
us to make violin-type instruments in all frequency ranges with the properties built
into the violin itself by the masters of three centuries ago. Thus for the first time
we have a whole family of instruments made according to a consistent acoustical
theory. Beyond a doubt they are musically successful.

FOR THREE oa FOUR centuries string
quartets as well as orchestras both
large and small, have used violins,
violas, cellos and contrabasses of clas-
sical design. These wooden instru-
ments were brought to near perfec-
tion by violin makers of the 17th and
18th centuries. Only recently, though,
has testing equipment been good
enough to find out just how they work,
and only recently have scientific meth-
ods of manufacture been good enough
to produce consistently instruments
with the qualities one wants to design
into them. Now, for the first time,
we have eight instruments of the violin
family constructed on principles of
proper resonance for desired tone
quality. They represent the first suc-
cessful application of a consistent
acoustical theory to a whole family of
musical instruments.

The idea for such a gamut of violins
is not new. It can be found in Mi-
chael Praetorius's Syntagma Musicum
published in 1819. But incomplete
understanding and technological ob-

by Carleen Maley Hutchins

stacles have stood in the way of practi-
cal accomplishment. That we can
now routinely make fine violins in a
variety of frequency ranges is the re-
sult of a fortuitous combination:
violin acoustics researchshowing a
resurgence after a lapse of 100 years
and the new testing equipment capa-
ble of responding to the sensitivities of
wooden instruments.

As is shown in figure 1, our new in-
struments are tuned in alternate inter-
vals of a musical fourth and fifth over
the range of the piano keyboard.
Moreover each one has its two main
resonances within a semitone of the
tuning of its middle strings. The re-
sult seems beyond a doubt successful
musically. Over and over again we
hear the comment, "One must hear the
new instruments to believe such
sounds are possible from strings."

Catgut Acoustical Society
Groundwork in fix. scientific investiga-
tion of the violin was laid by such men
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as Marin Mersenne (1636), Ernst
Chladni (1802:, Felix Savart (1819)
and Hermann L. F. Helmholtz (1860).
Savart, who can rightly be considered
the grandfather of violin research,
used many ingenious devices to ex-
plore the vibrational characteristics of
the violin. But he was unable to
sufficient knowledge of its complicat-
ed resonances to apply his ideas suc-
cessfully to development and construc-
tion of new instruments. Recent re-
search that has led to our new fiddle
family is largely the work of Hermann
Backhaus, Herman Meinel, Cioacchino
Pasqualini, Ernst Rohloff, Werner Lot-
termoser and Frieder Eggers in Eu-
rope and of the late Frederick A.
Saunders, John C. Schelleng, William
Hai vey Fletcher and myself in the
United States.

Saunders, widely known for his
ss ork on Russell-Saunders coupling, pi-
oneered violin research on this side of
the Atlantic. He was a former chair-
man of the physics department of Har-
vard University, a fellow of the Na-
tional Academy of Sciences and presi-
dent of the Acoustical Society of
America. In his work on violin acous-
tics, Saunders gradually became as-
sociated with colleagues who were
highly competent in various scientific
and musical disciplines. These associ-
ates greatly furthered the development
of his work and contributed valuable
technical knowledge, but they had lit-
tle time for experimentation. Sonic
were skillful musicians living under

the pressure of heavy teaching and
concert schedules. Nevertheless some
were able to find time for the testing,
designing aad craftsmanship needed
in the development of experimental in-
struments. In 1963 about 30 persons
associated with Saunders in this proj-
ect labeled themselves the "Catgut
Acoustical Society." This informal so-
ciety now has more than 100 members
(see box on page 26), publishes a
semiannual newsletter and holds one
or two meetings each year. Among its
members are acousticians, physicists,
chemists, enzineeis, instrument mak-
ers, composers, performing _musicians,
musicologists, patrons and others who
believe that insufficient attention has
been paid to the inherent potentialities
of bowed string instruments. They
ale making a coordinated effort to dis-
cover and develop these potentialities
and are encouraged that many mem-
bers of the violin fraternity share their
aims.

Among other accomplishments of
our Catgut Acoustical Society is a con-
cert played t Harvard last summer
during the meeting of the Acoustical
Society of America. It was dedicated
to Saunders and the instruments were
our eight new fiddles, which arc the
outgrowth of research he began. I
write about the concert and about the
instruments as a member of the society
and as one who worked with Saunders
from 1948 until his death in 1963.
My activities include reconciliation of
the wisdom of experienced musicians

In addition to nur-
turing her fiddle
family, the author
shows interest in
children. After grad-
uating from Cornell
she taught for 15
years in New Yolk
schools, acquiring an Tr
MA from New York
Unisersity mean- WO'
while. She also ac-
quired a chemist hus-
band and two chil-
dren, all of whom
rise in Montclair,
N. J.

234

ft

fy

and violin makers, coordination of
much technical information from
widely separated sources, and design,
constiuction and testing of experimen-
tal instruments. In 1937 Saunders re-
po' tedi in the Journal of the Acoust;
cal Society of America what later
proved to be basic to the development
of the new violin family, namely the
position of the main body resonance
as well as the main cavity resonance
in a series of excellent violins. (The
main body resonance is the lowest
fundamental resonance of the wood
structure; the cavity resonance is that
of the air in the instrument cavity.)
lint the necessary knowledge of how
to place these resonances with any de-
gree of predictability in instruments of
good tone quality was not evolved and
reported until 1960.2 The tonal effect
of this placement of the two main
resonances for each instrument and the
necessary scaling theory was not re-
ported until 1962.3

Between 1950 and 1958 Saunders
and I undertook a long series of exper-
iments to test various features of violin
construction one at a time. We deter-
mined effect of variations in length,
shape and placement of the f holes,
position of the bass bar and sound
post, significance of the inlay of pur-.
fling around the edges of top and back
plates and frequency of the cavity res-
onance as a function of rib height and
f hole areas (see figure 2). Because
many of these experiments needed de-
finitive testing equipment not then
available, most of the results are still
unpublished in Saunders's notebooks.

One sobering conclusion we reached
was that with many alterations in such
features as size and shape of f holes,
position of the bass bar and sound
post, the best tonal qualities resulted
when conventional violin-making rules
were followed. In other words, the
early violin makers, working empirical-
ly by slow trial and error, had evolved
a system that produced practically op-
timal relationships in violin construc-
tion.

In 1958, during a long series of cx-
perinients to test the effect of moving
violin and viola resonances up and
down scale, the composer in residence
at Bennington College, Henry Brant,
and the cellist, Sterling Hunkins, pro-
posed development of eight violin-
type instruments in a series of tunings
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NEW INSTRUMENT TUNING spans the piano range with eight fiddles that
range in size from 210.cm contrabass to a 27cm treble. The conventional
violin is the mezzo of the new series. Colored keys show tuning of new in.
struments and white dots that of conventional instruments. FIG. 1
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and sizes to cover substantially the
whole pitch range used in written
music; these instruments would start
with an oversize contrabass and go to
a tiny instrument tuned an octave
above the violin. Their request was
so closely related to our experimental
work that after half an hour's discus-

sion Saunders and I agreed that a seri-
ous attempt would be made to de-
velop the set. The main problem
would be to produce an instrument in
each of the eight frequency ranges
having the dynamics, the expressive
qualities and overall power that are
characteristic of the violin itself, lb

contrast to the conventional viola, cello
and string bass.

Research and new fiddles
The problem of applying basic re-
search results to actual design and
construction of new instruments now
faced us. From the previous ten

Who's Who in Catgut Acoustics

Without cross fertilization of
ideas from experts in many
related disciplines our new
fiddle family could not have
evolved in the short period of
nine or ten years. No listing
of names and activities can
do justice to each one whose
thinking and skills have been
challenged and who has
given time, energy and
money. Their only reward
is sharing in the project.

The spirit of the group has
been likened to the informal
cooperation that flourished
among scientists In the 18th
century. In addition many
of the active experimenters
are themselves enthusiastic
string players so that a tech-
nical session is likely to end
with chambermusic playing.

In the following list I try to
include all those who have
helped along the way, listing
those who have been most
active first even though they
are not all members of CAS.
Some of the numerous
musicians are not actually
familiar with the new instru-
ments, but their comments
on earlier experimental mod-
els of conventional violins,
violas and cellos have provid-
ed musical insights and in-
formation necessary to the
new instruments.

Physicists. Basic re-
search and scaling for the
new instruments: Frederick
A. Saunders, John C. Schel-
leng and myself. Theory of
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vibrations, elasticity, shear
and damping in the instru-
ments and their parts: Ar-
thur H. Benade, Frieder Eg-
gers, Roger Kerlin, Max V.
Mathews, Bernard W. Robin-
son, Robert H. Scanlan, John
C. Schelleng, Eugen J.
Skudrzyk, Thomas W. W.
Stewart, Sam Zaslayski.

Chemists. Effects of var-
nish and humidity on the in-
struments; varnish research:
Robert E Fryxell, Morton A.
Hutchins, Louis M. Condax.

Architect. Basic design
and development of patterns
for the new violin family, and
maker of bows for them:
Maxwell Kimball.

Electronic engineers.
Norman Dooley, Francis L.
Fielding, Sterling W. Gor-
rill, A. Stuart Hegeman, Alvin
S. Hopping.

Translators. Mildred Al-
len, Edith L. R. Corliss, Don-
ald Fletcher.

Editors. Harriet M. Bart-
lett, Dennis Flanagan, Rob-
ert E. Fryxell, Wary L. Har-
bold, Martha Taylor, Alice
Torrey, Howard Van Sickle.

Photographers. Louis M.
Condax, Russell B. Kingman,
Douglas Ogawa, Peter N.
Pruyn, J. Kellum Smith.

Artist. Irving Geis.
Lawyers. Harvey W. Mor-

timer, J. Kellum Smith, Rob-
ert M. Vorsanger.

General consultants.
Alice T. Baker, Donald Engle,
Cushman Haagensen, Mary

W. Hinckley, Ellis Kellett,
Henry Allen Moe, Ethel and
William R. Scott.

Secretaries. Lorraine El-
liott, Belle Magram.

Violin experts and makers.
Kari A. Berger, Rene Morel,
Simone F. Sacconi, Rembert
Wurlitzer, myselfand Vir-
ginia Apgar, Armand Berths,
William W. Bishop, Donald L
Blatter, William Carboni,
Louis M. Condax, Fred Dau-
trich, Jean L Dautrich, Louis
Dunham, Jay C. Freeman,
Louis Grand, Jerry Juzek,
Otto Kaplan, Gordon McDon-
ald, William E. Slaby.

Violinists. Charles F. Aue,
Broadus Erle, William Kroll,
Sonya Monosoff, Helen Rice,
Louis E. Zerbeand Sam-
uel Applebaum, Catherine
Drinker Bowen, Marjorie
Bram, Ernestine Briemels-
ter, Alan Branigan, Nicos
Cambourakis, Roy B. Cham-
berlin Jr., Frank Clough,
Louis M. Condax, Yoko Mat-
suda Erle, Sterling Gorrill,
Walter Grueninger, Ann Ha-
worth, H. T. E. Hertzberg,
Carol Lieberman, Max Man-
del, Max V. Mathews, David
Montagu, Max Pollikoff, Ber-
nard W. Robinson, Booker
Rowe, Frances Rowell, Rob-
ert Rudie, Florence DuVal
Smith, Jay C. Rosenfeld.

Violists. Robert Comte,
Lille Kalman, Maxwell Kim-
ball, Dovid Mankovitz, Louise
Rood, Frederick A. Saunders
and John A. Abbott, Alice

t.

Schradieck Aue, Virginia
Apgar, Emil Bloch, Harold
Colette, Helene Dautrich,
John D'Janni, Lillian Fuchs,
Raphael Hillyer, Henry
James, Boris Kroyt, Eugene
Lehner, Rustin McIntosh,
John Montgomery, Elizabeth
Payne, Werner Rose, David
Schwartz, Emanuel Vardi,
Eunice Wheeler, Bernard Zas-
lay, Sam Zaslayski, myself.

Cellists. Robert Fryxell,
John C. Schelleng, India
Zerbeand Charles F. Aue,
Joan Brockway, Roy B.
Chamberlin, Frank Church,
Elwood Culbreath, Oliver
Edel, Maurice Eisenberg,
George Finckel, Marie Gold-
man, Barbara Hendrian, Ar-
nold Kvam, Russell B. King-
man, Charles McCracken,
Stephen McGee, George
Ricci, Peter Rosenfeld, Mary
Lou Rylands, True Sackrison,
Mischa Schneider, Sanford
Schwartz, Joseph Stein, Mis-
cha Slatkin, Joseph Tekula.

Bassists. Julius Levine,
Alan Moore, Ronald Naspo,
David Walterand Alvin
Brehm, John Castronovo,
Garry Karr, Stuart Sankey,
Charel Traeger, Howard Van
Sickle, Ellery Lewis Wilson.

Composers and conduc-
tors. Henry. Brantand
Marjorie Bram, Justin Con-
nolly, Herbert Haslam, Frank
Lewin, Marc Mostovoy, Har-
old Oliver, Quincy Porter,
Cornelia P. Rogers, Leopold
Stokowski, Arnold M. Walter.

PHOTO BY J. KEU.UM SMITH

REHEARSAL for a
concert with Henry
Brant conducting an
octet of fiddles.
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years' experimentation, the following
four working guides were at hand:

1. location of the main body and
main cavity resonances of several
hundred conventional violins, violas
and cellos tested by Saunders and oth-
ers,s, 4-9

2. the desirable relation between
main resonances of free top and back
plates of a given instrument, devel-
oped from 400 tests on 35 violins and
violas during their construction, 2.10,11

3. knowledge of how to change
frequencies of main body and cavity
resonances within certain limits
(learned not only from many experi-
ments of altering plate thicknesses, rel-
ative plate tunings and enclosed air
volume but also from construction of
experimental instruments with varying
body lengths, plate archings and rib
heights) and of resultant resonance
placements and effects on tone quality
in the finished instrwnents,24,11

4. observation that the main body

resonance of a completed violin or
viola is approximately seven semitones
(quarter notes) above the average of
the main free-plate resonances, usually
one in the top and one in the back
plate of a given instrument.2 This
observation came from electronic plate
testing of free top and back plates of
45 violins and violas under construc-
tion. It should not be inferred that
the relation implies a shift of free-plate
resonances tc those of the finished in-
strument. The change from two free
plates to a pair of plates coupled at
their edges through intricately con-
structed ribs and through an off-center
soundpost, the whole under varying
stresses and loading from fittings and
string tension, is far too complic ' to
test directly or calculate.12

What is good?
In developing the new instruments our
main problem was finding a measura-
ble physical characteristic of the violin

INSTRUMENT ?ARTS, except for
scaling, have remained the same since
master makers brought the violin to
near oerfection about three centuries
ago. FIG. 2

itself that wou'd .et it apart from its
cousins, the viol:. cello ar.d contra-
bass. The search for this controlling
characteristic, unique to the violin,
led us through several hundred re-
sponse and loudness curves of violins,
violas and cellos. The picture was at
first confusing because many varia-
tions were found in the placement of
the two main resonances. However,
Saunders's tests on jasha Heifetz's
Cuarnerius violinis showed the main-
body resonance was near the fre-
quency of the unstopped A 440-cycles-
per-second string and the main cavity
resonance at the unstopped D 294
string. Thus the two main resonances
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of this instrument were near the fre-
quencies of its two unstopped middle
strings.

Ten violins, selected on the basis
that their two main resonances were
within a whole tone of their two open
middle strings, were found to be some
of the most musically desirable instru-
mentsAmatis, Stradivaris, Guar-
neris and several modem ones. In
marked contrast to these were all vi-
olas and cellos tested, which charac-
teristically had their main body and
cavity resonances three to four semi-
tones above the frequencies of their
two open middle strings although they
still had the same-separation, approxi-
mately a musical fifth, between these
two main resonances.

We ieasoned that the clue to our
problem might be this placement of
the two main resonances relative to
the tuning of the two open middle
strings. A search through many small
violins and cellos, as well as large and

small violas, showed enormous varia-
tion in the placement of these two res-
onances. We hoped to find some in-
strument in which even one of these
resonances would approximate what
we wanted for the new instruments.

In one quarter-size cello the body
resonance was right for viola tuning, D
294, but the cavity resonance was too
low at D 147. We bought this
chubby little cello and reduced the
rib height nearly 4 in. (10 cm),
thereby raising the frequency of the
cavity resonance to the desired G 198.
When it was put back together, it
looked very thin and strange with ribs
only 1.5 in. (3.8 cm) high and a body
length of over .20 in. (51 cm), but
strung as a viola it had tone quality
satisfactory beyond expectations)

An experimental small viola that I
had made for Saunders proved to have
its two main resonances just a semi-
tone below the desired frequency for
violin tone range. When strung as a
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violin, this shallow, heavy-wooded in-
strument had amazing power and clar-
ity of tone throughout its range. It
sounded like a violin although the
quality on the two lower strings was
somewhat deeper and more viola-like
that the normal violin.

The next good fortune was discov-
ery and acquisition of a set of three in-
struments made by the late Fred L.
Dautrich of Torrington, Conn., during
the 1920's and '30's. He had de-
scribed them in a booklet called Bridg-
ing the Caps in the Violin Family.a
His vilonia, with a body length of
20 in. (51 cm) was tuned as a viola
and played cello-fashion on a peg.
The vilon, or tenor, which looked like
a halfs;ze cello, w :tined an octave
below the violin, G-D-A-E. His vi-
lono, or small bass, with strings tuned
two octaves below the violin, filled the
gap between the cello and the con-
trabass. These represented three of
the tone ranges we had projected for
the new violin family. Tests showed
that their resonances lay within work-
ing range of our theory. A year of
work, adjusting top and back plate
wood thicknesses for desired reso-
nance frequencies and rib heights for
proper cavity resonances in each of the
three instruments gave excellent re-
sults. The vilono proved to have ex-
actly the resonance frequencies pro-
jected for the enlarged cello, or bari-
tone. So it was moved up a notch in
the series and tuned as a cello with
extra long strings.

Dautrich's pioneering work had
saved years of cut and try. We now
had four of the new instruments in
playing condition; mezzo, alto (verti-

BODY LENGTHS for new instruments
were determined by plotting lengths
of known instruments against wave
length, then extending data in a
smooth curve to include treble at one
end and contrabass at the other.
Identified points show where old and
new instruments fall. FIG. 3

238



cal viola), tenor and baritone. I was
able to add a fifth by making a so-
prano, using information gained from
many tests on three-quarter- and half-
size violins.

With five of the new instruments
developed experimentally and in play-
ing condition, we decided to explore
their musical possibilities and evaluate
the overall results of our hypothesis of
resonance placement. In Ociobei
1961 the working group gathered at
the home of Helen Rice in Stock-
bridge, Mass., where Saunders and his
associates had, for some years, met fre-
quently to discuss violin acoustics and
play chamber music. Short pieces of
music were composed for the five in-

struments, and the musicians gave the
new family of fiddles its first workout.
The consensus was that our hypothesis
was working even better than we had
dared to hope! Apparently the violin-
type placement of the two main reso-
nances on the two open middle strings
of each instrument was enabling us to
project the desirable qualities of the
violin into higher and lower tone
ranges.

The next step was to explore the
resonances of various size basses to
help in developing the small bass and
the contrabass. A small three-quarter-
size bass with arched top and back
proved to have just about proper reso-
nances for the small bass. With re-
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moval of its low E 41 string and the
addition of a high C 131 string to
bring the tuning to A-D-G-C (basses
are tuned in musical fourths for ease of
fingering) it fitted quite well into the
series as the small bass. But as yet no
prototype for the contrabass could be
located. This final addition to the se-
ries was to come later.

First musical success

By January 1962 we were ready for a
real test in which experts could hear
our six new instruments and coxnpar3
them with good conventiznal violins,
violas and cellos. Composers ar-
ranged special music, and professional
players had a chance to practice on
the new instruments.

Ensemble results exceeded all our
expectations. We had violin-like
quality and brilliance through the en-
tire range of tones. Our soprano pro-
duced a high clear quality that carried
well over the other instruments al-
though the high positions on its two
lower strings were weak. The mezzo
tone was powerful and clear although
somewhat viola-like on the two lower
strings. The alto (vertical viola) was
judged a fine instrument even with in-
adequate strings. The unique tone of
the tenor excited all who heard it.
The baritone produced such powerful
and clear tones throughout its range
that the cellist playing it in a Brahms
sonata commented, "This is the first
time I have been able to hold my own
with the piano!" The small bass was
adequate but needed more work.
General comments told us that the
new instruments were ready to stand
on their own, musically, although
much more work was to be done on
adjustments, strings and proper bows.

End-of-scale problems
With the helpful criticisms and
suggestions that came from the first
musical test we were encouraged to

LOUDNESS CURVES are useful
evaluations of instrument character.
fides. Each is made by bowing an
instrument to maximal loudness at 14
semitones on each string and plotting
the resulting loudness ceiling against
frequency of sound. FIG. 4
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tackle the problems of the largest and
smallest instruments. No existing in-
struments could be adapted experi-
mentally. We had to design and build
them.

The largest bass available for testing
was a huge Abraham Prescott, with a
48-in. (122-an) body length, made in
Concord, N.H., in the early 1800's but
even that was not big enough! A tiny
pochette, or pocket fiddle, from the
Wurlitzer collection, with a body
length of 7 in. (18 an) had the right
cavity resonance, but its body reso-
nance was much too low.

The body length of each of the new
instruments has been one of the con-
trolling factors in all of our experi-
ments. Thus it was decided that the
best way to arrive at the dimensions
for the largest and smallest would be
to plot a curve of body lengths of
known instruments, to check against
their resonance placement and string
tuning. This working chart is shown
in figure 3 in which linear body length
is plotted against the logarithm of
wavelength. The curve for the new
instruments was extended in a smooth
arc to include the contrabass fre-

quency at the low end and the treble
frequency at the upper end, an octave
above the normal violin. This proce-
dure gave a projected body length of
51 in. (130 cm) for the contrabass and
10.5 in. (28.5 an) for the treble. Of
course rib height and enclosed air vol-
ume were separately determined by
other considerations.

Current design practice
From all of this experience we have
developed what we might call a "de-
sign philosophy." It depends mainly
on resonance placement and loudness
curves.

Our resonance principle, according
to which each member of the new
violin family has been made, can be
stated as follows: The main body res-
onance of each of the instruments
tuned in fifths is placed at the fre-
quency of the open third string, and
the main cavity resonance at the fre-
quency of the open second string.
Another way of stating the principle,
and one that includes the instruments
tuned in fourths as well as those tuned
in fifths, is this: Wood prime is
placed two semitones above the lowest
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tone, and the cavity resonance is a
fourth above that. (Wood prime is
the strengthened frequency one oc-
tave below the main body"wood"

resonance.) These conditions are
exemplified in Heifetz's Guamerius
violin and many other good ones, but
they are not found in all good violins.

The loudness curve developed by
Saunders is one of our most useful
measures for evaluating overall instru-
ment characteristics. We make such a
curve by bowing an instrument as
loudly as possible at 14 semitones on
each string and plotting maximal loud-
ness against frequency. Despite una-
voidable variations in any test that re-
quires a musician to bow an instru-
ment, the loudness curve is significant
because there is a fairly definite limit
to the momentary volume an experi-
enced player can produce with a short
rapid bow stroke.

As you will see in figure 4, the loud-
ness ceiling varies for each semitone
on a given instrument. The curves of
this figure were made by bowing each
instrument without vibrato at a con-
stant distance from a sound meter.
From them you can see the placement
of main body and cavity resonances in
eight conventional instrumentstwo
violins, two violas, two cellos and two
basses. You can see that in the vio-
lins the wood prime adds power to the
low range of the G string. In the vi-
olas, cellos and basses the two main
resonances, which are higher in fre-
quency relative to string tuning, create

SCALING FACTORS for old and new
instruments are a useful reference
guide for designers. FIG. 5
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a condition of somewhat weaker re-
sponse on the lowest four or five semi-
tones.

Fitting fiddles to players
After you decide what kind of acous-
tics you want, you still have another
problem: You have to make fiddles
that people can play. For years we
worked toward design of an acousti-
cally good instrument with genuine
viola tone. Meanwhile we had to
keep in mind such conflicting require-
ments as large radiating areas in the
plates and adequate bow clearance in
the C bouts (figure 2). Relation of
string length to other dimensions that
define tone spacing on the fingerboard
the violin maker's "mensure"is an-
other consideration important to the
player. With our acoustic pattern as a
model we undertook enlarging, scaling
and redesigning all our new instru-
ments, always keeping violin place-
ment of resonances in each tone range.

From our set of experimentally
adapted instruments, which represent
a variety of styles and designs in violin
making, we had learned many things.
The vertical viola was about right in
body dimensions, but its strings were
too long for viola fingering and too
short for cello fingering. The tenor
was too small, and the cellists were
asking for it to have strings as long as
possible. The baritone was right for
body size, but it had much too long
strings. The bass players were asking
for a long neck on the small bass and a
short one on the large bass with string
lengths as close as possible to conven-
tional.

From such comments we realized
that there were two basic designs for
ease of playing in relation to string
lengths and overall mensure of each
instrument. Controlling factor in the
instrument mensure is placement of
the notches of the f holes because a
line drawn between these two points
dictates the position of the bridge and
the highest part of the arch of the top
plate. Mensure for the tenor and
small bass would need to be as great
as possible and for the vertical viola
and baritone it would need to be as
small as possible. Since the relative
areas of the upper and lower bouts are
critical factors in plate tuning, adjust-
ment of these mensures posed quite a
set of problems.

We developed a series of scaling
factors1 based on relative body length,
relative resonance placement and rela-
tive string tuning that could be used as
a reference guide in actual instrument
construction. Figure 5 shows the set
which has proved most useful in mak-
ing the eight new instruments as well
as those of conventional instruments.

We had a problem in measuring re-
sponses of plates of many sizesall the
way from the 10.5.in. (26-cm) one of
the treble violin to the 51-in, -(-130 -
cm) one of the contrabass. We solved
it by redesigning our transducer from
a magnet - armature to a moving-coil
type. Then the wooden fiddle plate,
suspended at its corners by elastic
bands, was made to vibrate as the
cone of a loudspeaker (figure 8).

Using the know-how developed in
making and testing several hundred
violin, viola and cello plates, I could
tune the plates of new instruments so
that not only did each pair of top and
back plates have the desired frequency
relation,2 but it also had its wood
thicknesses adjusted to give a reason-
able approach to what would be an
optimal response."

As a starting guide in adjusting plate
frequencies I used the finding that a
seven-semitone interval should sepa-
rate the main body resonance of the
finished violin from the average of the
two frequencies of the free plates. It
was soon obvious, however, that this
relationship was not going to hold as
the instruments increased in size. As
the instrument gets larger the interval
becomes smaller, but we do not have
enough data yet to make a precise
statement about it.

We used scaling theory and the
three basic acoustical tones of scientific
violin making: (a) frequency rela-
tionship between free top and back
plates, (b) optimal response in each
plate and (c) interval between body
resonance and average of free-plate
freque..cies. We are able not only to
create new instruments of the violin
family but also to improve the present
members. But we have to combine
the acoustical tools with the highest
art of making.

Traits of family members
Any family has its resemblances and
its differences. So it is with our vio-
lins. They make a family (figure 7)
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with basic traits in common. But they
also have their own personalities.

Treble (G-D-A-E ). The main prob-
lem with our treble has been to get the
frequencies of body and cavity reso-
nances high enough and still keep the
mensure long enough for a player to
finger consecutive semitones without
having to slide his fingers around.
We projected a theoretical body
length of 10.5 in. (26.7 cm) and a
string length of 10 in. (25.4 cm), but
to have the proper cavity resonance in
this size body, the ribs would be only
3 mm higha potentially dangerous
structural condition! Besides we
knew of no string material that could
be tuned to E 1320 at a length of 25.4
cm without breaking. At one point
we thought we might have to resort to
a three-stringed instrument in this
range as was indicated by Michael
Praetorius in 1819.16

The cavity-resonance problem was
solved by making six appropriately
sized holes in the ribs to raise its fre-
quency to the desired D 587. A string
material of requisite tensile strength to
reach the high E 1320 was finally
found in carbon rocket wire, made by
National Standard Company. This
proved suitable not only for the high E
string but for a number of others on
the new instruments. As a temporary
measure the ribs were made of soft
aluminum to prevent the holes from
unduly weakening the structure. Re-
design should eliminate the nasal
quality found on the lower strings and
improve the upper ones. Despite this
nasal quality many musicians are
pleased with the degree in which the
upper strings surpass the normal violin
in the same high range.

Plans are to redesign this instrument
in several different ways in an effort to
discover the best method of achieving
desired tone quality throughout its en-
tire range.

Soprano (CC.-D-A). The soprano
was designed to have as large a plate
area as possible, with resulting shallow
ribs and fairly large f holes to raise the
cavity resonance to the desired G 392.
The overall tone has been judged good
and is most satisfactory on the three
upper strings. The instrument needs
redesign, however, for a better quality
on the lower strings. The mensure is
as long as possible for playing con-
venience. J. S. Bach wrote for an in.
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TESTING FIDDLES. New tech-
niques enable today's makers to
achieve results their predecessors
could not produce. Redesigned trans-
ducer measures response of plate that
is made to vibrate like a loudspeaker
cone in operation. FIG. 6

strument in this tuning, which Sir
George Grove describes in Grove's dic-
tionary:19 "The violin piccolo is a
small violin, with strings of a length
suitable to be tuned a fourth above the
ordinary violin. It existed in its own
right for playing notes in a high
compass....It survives as the 'three-
quarter violin' for children. Tuned
like a violin, it sounds wretched, but
in its proper pitch it has a pure tone
color of its own, for which the high
positions on the ordinary violin gave
no substitute."

Mezzo ( ). The present
mezzo with a body length of 18 in.
(40.5 cm) was added to the new
violin family when musicians found

242

that even an excellent concert violin
did not have the power of the other
members of the group. According
to scaling theory18 this instrument,
which is 1.14 times as long as the
violin, has somewhat more power than
necessary to match that of the others.
So a second instrument has been de-
veloped that is 1.07 times as long as
the violin. It has violin placement of
resonances yet is adjusted to have con-
ventional violin mensure for the play-
er.19 It has more power than the nor-
mal violin and seems most satisfactory.
In fact several musicians have indicat-
ed that it may be the violin of the fu-
ture.

Alto (vertical viola) (C-G-D-A).
The greatest difficulty with the alto
is that it puts the trained viola player
at a distinct disadvantage by taking
the viola from under his chin and set-
ting it on a peg, cello fashion on the

a
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floor. Even with an unusual body
length of 20 in., its mensure has been
adjusted to that of a normal 17.5-in.
(44.5-cm) viola, and some violists
with large enough physique have been
able to play it under the chin. Cello
teachers have been impressed by its
usefulness in starting young children
on an instrument that they can handle
readily as well as one they can con-
tinue to follow for a career. The
greatest advantage is the increase in
power and overall tone quality."
Leopold Stokowski said when lie
heard this instrument in concert, "That
is the sound I have always wanted
from the violas in my orchestra. No
viola has ever sounded like that be-
fore. It fills the whole hall."

Tenor (G-D-A-E). The body length
of the tenor was redeveloped from the
Dautrich vilon which had a length
ratio of 1.72 to the violin. The pres-



TRE WHOLE FAMILY poses
for pictures with performers
trying them out. FIG. 7
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ent tenor has a ratio of 1.82 with
other factors adjusted accordingly, and
the strings as long as possible for con-
venience in cello fingering. Many
musicians have been impressed with
its potential in ensemble as well as solo
work. They are amazed to find that it
is not a small cello, musically, but a
large octave violin.

The main problem for this instru-
ment is that there is little or no music
for it as yet. Early polyphonic music,
where the tenor's counterpart in the
viol family had a voice, has been rear-
ranged for either cello or viola. It has
no part in classical string or orches-
tral literature, and only a few con-
temporary compositions include it.
Grove" has this to say: "The gradual
suppression of the tenor instrument in
the 18th century was a disaster;
neither the lower register of the viola
nor the upper register of the violon-
cello can give its effect. It is as
though all vocal part music were sung
without any tenors, whose parts were
distributed between the basses and
contraltos! It is essential for 17th
century concerted music for violins
and also for some works by Handel
and Bach and even later part-writing.
In Purcell's Fantasy on One Note the
true tenor holds the sustained C.. .
The need for a real tenor voice in the
19th century is evidenced by the many
abortive attempts to create a substi-
tute."

Baritone (C-GDA). The body res-
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treble soprano

onance of our baritone is nearly three
semitones lower than projected, and
this departure probably accounts for
the somewhat bass-like quality or. the
low C 65.4 string. Its strings are 0.75
in. (1.8 cm) longer than those of the
average cello. One concert cellist said
after playing it for half an hour, "You
have solved all the problems of the
cello at once. But I would like a con-
ventional cello string length." Thus a
redesign of this instrument is desirable
by shortening the body length a little.
This redesign would raise the fre-
quency of the body resonance and at
the same time make possible a shorter
string.

Small bass (A-D-G-C). Our first
newly constructed instrument in the
bass range is shaped like a bass viol
with sloping shoulders, but has both
top and back plates arched and other
features comparable to violin construc-
tion. This form was adopted partly to
discover the effect of the sloping
shoulders of the viol and partly be-
cause a set of half-finished bass plates
was available. The next small bass is
being made on violin shape with other
features as nearly like the first one as
possible. Bass players have found the
present instrument has a most desira-
ble singing quality and extreme play-
ing ease. They particularly like the
bass-viol shape. It has proved most
satisfactory in both concert and re-
cording sessions.

Contrabass (E-A-D-G). Our con-
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trabass21 is 7 ft (210 cm) high overall;
yet it has been possible to get the
string length well within conventional
bass mensure at 43 in. (110 cm) so
that a player of moderate height has
no trouble playing it except when he
reaches into the higher positions near
the bridge. For sheer size and weight
it is hard to hold through a 10-hr re-
cording session as one bassist did.
When it was first strung up, the player
felt that only part of its potential was
being realized. The one construction-
al feature that had not gone according
to plan was rib thickness. Ribs were 3
mm thick, whereas violin making indi-
cated they needed to be only 2 mm
thick. So the big fiddle was opened;
the lining stripes cut out, and the ribs
planed down on the inside to an even
2 mm all overa job that took 10 days.
But when the contrabass was put to-
gether and strung up, its ease of play-
ing and depth of tone delighted all
who played or heard it. Henry Brant
commented, "I have waited all my life
to hear such sounds from a bass."

How good are they really?
All who have worked on the new in-
struments are aware of the present
lack of objective tests on themaside
from musician and audience com-
ments. In the near future we plan to
compare comments with adequate
tonal analyses and response curves of
these present instruments as well as
new ones when they are made. The
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only objective evaluation so far comes
from A. H. Benade at Case Institute:
"I used my 100-W amplifier to run a
tape recorder alternately at 60 and 90
cps while recording a good violin with
the machine's gearshift set at the three
nominal 1-, 3.5- and T.5-in/sec speeds.
This was done in such a way as to
make a tape which, when played back
at 3.5 in/sec, would give forth sounds
at the pitches of the six smaller instru-
ments in the new violin family (small
bass and contrabass excluded). There
were some interesting problems about
the subjective speed of low- compared
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18 The Seven Images of Science

Gerald Holton

1960

Pure Thought and Practical Power

Each person's image of the role of
science may differ in detail from that
of the next, but all public images are
in the main based on one or more of
seven positions. The first of these goes
back to Plato and portrays science as
an activity with double benefits: Science
as pure thought helps the mind find
truth, and science as power provides
tools for effective action. Ir. book 7 of
the Republic, Socrates tells Glaucon
why the young rulers in the Ideal State
should study mathematics: "This, then,
is knowledge of the kind we are seek-
ing, having a double use, military and
philosophical; for the man of war must
learn the art of number, or he will not
know how to array his troops; and the
philosopher also, because he has to rise
out of the sea of change and lay hold
of true being.... This will be the eas-
iest way for the soul to pass from be-
coming to truth and being."

The main flaw in this image is that
it omits a third vital aspect. Science
has always had also a mythopocic func-
tionthat is, it generates an impor-
tant part of our symbolic vocabulary
and provides some of the metaphysical
bases and philosophical orientations of
our ideology. As a consequence the
methods of argument of science, its
conceptions and its models, have per-
meated first thc intellectual life of the
time, thcn the tenets and usages of
svcryday life. All philosophies share
with scicnce the need to work with
concepts such as space, time, quantity,
matter, order, law, causality, verifica-
tion. reality. Our language of ideas,
for example, owes a great debt to

statics, hydraulics, and the model of
the solar system. These have furnished
powerful analogies in many fields of
study. Guiding ideas--such as condi-
tions of equilibrium, centrifugal and
c_ntripetal forces. conservation laws,
feedback. invariance, complementarity
enrich the general arsenal of imagina-
tive tools of thought.

A sound image of science must em-
brace each of the three functions.
However. usually only one of thc three
is recognized. For example. folklore
oftcn depicts thc life of the scientist
either as isolated from life and from
beneficent a lion or, at the othcr
extreme. as dedicated to technological
improvements.

Iconoclasm

A second image of long standing is
that of the scicntist as iconoclast. In-
deed. almost every major scientific ad-
vance has bccn interpretedeither tri-
umphantly or with apprehensionas
a blow against religion. To sonic ex-
tent science was pushed into this posi-
tion by the ancient tendency to prove
the csistence of God by pointing to
problems which science could not solve
at the time. Newton thought that the
regularities and stability of the solar
system proved it "could only proceed
from the counsel and dominion of an
intelligent and powerful Being." and
the same attitude governed thought
concerning thc earth's formation bcforc
thc theory of geological evolution. con-
cerning the descent of man before the
theory of biological evolution, and con-

cerning the origin of our galaxy before
modern cosmology. The advance of
knowledge therefore made inevitable
an apparent conflict between science
and religion. It is now clear how large
a price had to be paid for a misunder-
standing of both science and religion:
to base religious beliefs on an estimate
of what science cannot do is as fool-
hardy as it is blasphemous.

The iconoclastic image of science
has, however. other components not as-
cribable to a misconception of its func-
tions. For example. Arnold Toyabee
charges science and technology with
usurping the place of Christianity as
the main source of our new symbols.
Neoorthodox theologians call science
the "self-estrangement" of man be-
cause it carries him with idolatrous
zeal along a dimension where no ulti-
matethat is. religiousconcerns pre-
vail. It is evident that these views fail
to recognize the multitude of divergent
influences that shape a culture, or a
person. And on the other hand there
is. of course, a group of scientists,
though not a large one. which really
does regard science as largely an icono-
clastic activity. Ideologically they arc. of
course, descendants of Lucretius, who
wrote on the first pages of De rerun;
Hamra, "The terror and darkness of
mind must he Lk:idled not by the rays
of the sun and glittering shafts of day.
but by the aspect and the law of na-
ture: whose first principle we shall be-
gin by thus 'acing. nothing is ever got-
ten out of nothing by divine power."
In our d4 this ancient trend has as-
sumed political significance owing to
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the fact that in Soviet literature scien-
tific teaching and atheistic propaganda
are sometimes equated.

Ethical Perversion

The third image of science is that
of a force which can invade, possess.
pervert, and destroy man. The current
stereotype of thc soulless, evil scientist
is the psychopathic investigator of
science fiction or the nuclear destroyer
immoral if hc develops the weap-
ons hc is asked to produce, traitorous
if he refuses. According to this view.
scientific morality is inherently nega-
tive. It causes the arts to languish, it
blights culture. and when applied to hu-
man affairs, it leads to regimentation
and to the impoverishment of life.
Science is the serpcnt seducing us into
eating thc fruits of the tree of knowl-
edgethereby dooming us.

The fear behind this attitude is genu-
ine but not confined to science: it is
directed against all thinkers and inno-
vators Society has always found it
hard to deal with creativity, innovation,
and new knowledge. And since science
assures a particularly rapid, and there-
fore particularly disturbing, turnover of
ideas. it remains a prime target of sus-
picion.

Factors peculiar to our time intensify
this suspicion. The discoveries of
"pure" sci.nce oftcn lend themselves
readily to widespread exploitation
through technology. The products of
technologywhether they are better
vaccines or better weaponshave the
characteristics of frequently being very
effective, easily made in large quanti-
ties. easily distributed, and very ap-
pealing. Thus we are in an inescapable
dilemmairresistibly tempted to reach
for the fruits of science, yet. deep in-
side, aware that our metabolism may
not he able to cope with this ever -in-
creasing appetite.

Probably the dilemma can no longer
be resolved, and this increases the
anxiety and confusion concerning
scienc,:. A current symptom is the pop-
ular identification of science with the
technology of sq aweapons. The bomb

is taking the place of the microscope.
Wernher von Braun, the place of Ein-
stein. as symbols for modern science
and scientists. The efforts to convince
people that science itself can give man
only knowledge about himself and his
environment, and occasion:1;1y a choice
of action. have been largely unavail-
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ing. The scientist eg reicitibt can take
little credit or responsibility either for
facts he discovers for he did not
create thcm--or for the uses others
make of his discoveries, for he gen-
erally is neither permitted nor specially
fitted to make these decisions. They
arc controlled by considerations of
ethics. economics, or politics and
therefore arc shaped by the values and
historical circumstances of the whole
society.

There arc other evidences of the
widespread notion that science itself
cannot contribute positively to culture.
Toynbee, for csample, gives a list of
"creative individuals." from Xenophon
to Hindenburg and from Dante to
Lenin. but does not include a single
scientist. I cannot forego the remark
that there is a significant equivalent on
the level of casual conversation. For
when the man in the street or many
an intellectualhears that you are a
physicist or mathematician, he will
usually remark with a frank smile, "OIL
I never could understand that subject";
while intending this as a curious com-
pliment, he betrays his intellectual dis-
sociation from scientific fields. It is not
fashionable to confess to a lack of ac-
quaintance with the latest epl- in
literature or the arts, but one n.Y :yen
exhibit a touch of pride in professing
ignorance of the structure of the uni-
verse or one's own body, of the be-
havior of matter or one's own mind.

The Sorcerer's Apprentice

The last two views held that man is
inherently good and science evil. The
next image is based on the opposite as-
sumptionthat man cannot he trusted
with scientific and technical knowledge.
He has survived only because he lacked
sufficiently destructive weapons; now
he can immolate his world. Science, in-
directly responsible for this new power,
is here considered ethically neutral.
But man, like the sorcerer's apprentice,
can neither understand this tool nor
control it. Div /oidably he will bring
upon himself catastrophe, partly
through his natural sinfulness, and
partly through his lust for power, of
which the pursuit of knowledge is a
manifestation. It was in t...is mood that
Pliny deplored the development of pro-
jectiles of iron for purposes of war:
"This last I regard as the most criminal
artifice that has been devised by the hu-
man mind; for, as if to bring death

upon man with still greater rapidity,,
we have given wings to iron and taught
It to fly. Let us, therefore, acquit Na-
ture of a charge that belongs to man
himself."

When science is viewed in this plane
as a temptation for the mischievous
savageit becomes easy to suggest a
moratorium on science, a period of
abstinence during which humanity
somehow will develop adequate spirit-
ual or social resources for coping with
the possibilities of inhuman uses of
modern technical results. Here I need
point out only the two main misun-
derstandings implied in this recurrent
call for a moratorium.

First, science of course is not an oc-
cupation, such as working in a store or
on an assembly line, that one may pur-
sue or abandon at will. For a creative
scientist, it is not a matter of ire_
choice what he shall do. Indeed it is
erroneous to think of him as advancing
toward knowledge; it is, rather, knowl-
c4e which advances towards him,
grasps him, and overwhelms him, Even
the most superficial glance at the life
and work of a Kepler, a Dalton. or a
Pasteur would clarify this point. It
would be well if in his education each
person were shown by example that
the driving power of creativity is as
strong and as sacred for the scientist
as for the artist.

The second point can be put equally
briefly. In order to survive and to pro-
gress. mankind surely cannot ever know
too much. Salvation can hardly be
thought of as the reward for ignorance.
:slim has been given his mind in (,,der
that he may find out where he is, what
he is, who he is, and how he may as-
sume the responsibility for himself
which is the only obligation incurred in
gaining knowledge.

Indeed, it may wen turn out that the
technological advances in warfare have
brought us to the point where society
is at last compelled to curb the aggres-
sions that in the past were condoned
and even glorified. Organized warfare
and genocide have been practiced
throughout recorded history, but never
until now have even the war lords
openly expressed fear of war. In the
search for the causes and prevention
of aggression among nations, we shall,
I am convinced, find scientific investi-
gations to be a main source of under-
standing.



Ecological Disaster

A change in the average temperature
of a pond or in the salinity of an ocean
may shift the ecological balance and
cause the death of a large number of
plants and animals. The fifth prevalent
image of science similarly holds that
while neither science nor man may be
inherently evil, the rise of science hap-.
pened, as if by accident, to initiate an
ecological changc that now corrodes
the only conceivable basis for a stable
society. .n the words o Jacques Mari-
lain, the "deadly disease" science set off
in society is "the denial of eternal truth
and absolute values."

The main events leading to this state
are usually presented as follows. The
abandonment of geocentric astronomy
implied the abandonment of the con-
ception of the earth as the center of
creation and of man as its ultimate pur-
pose. Then purposive creation gave
way to blind evolution. Space, time.
and certainty were shown to have no
absolute meaning. All a priori axioms
were discovered to be merely arbitrary
conveniences. Modern psychology and
anthropology led to cultural relativism
Truth itself has been dissolved nto
probabilistic and indeterministic state-
ments Drawing upon analogy with the
sciences. liberal philosophers have be-
come increasingly relativistic, denying
either the necessity or the possibility of
postulating immutable verities, and so
have undermined the old foundations
of moral and social authority on which
a stable society must he built.

It should he noted in passing that
many applications of recent scientific
concepts outside science merely reveal
ignorance about science. For examp:e,
relativism in nonscientific fields is gen-
erally based on farfetched analogies.
Relativity theory, of course, does not
find that truth depends on the point of
view of the observer but, un the con-
trary. reformulates the laws of physics
so that they hop good for every ob-
server, no matter how he moves or
where he stands. Its central meaning
is that the most valued truths in science
are wholly independent of the point of
view. Ignorance of science is also the
only excuse for adopting rapid changes

within science as models for antitradi-
tional attitudes outside science. In real-
ity, no field of thought is more conserv-
ative than science. Each change neces-
sarily encompasses previous knowledge.
Science grows like a tree, ring by ring.

Einstein did not prove the work of
Newton wrong; he provided a larger
setting within which some contradic-
tions and asymmetries in the earlier
physics disappeared.

But the image of science as an eco-
logical disaster can be subjected to a
n,ore severe critique. Regardless of
science's part in the corrosion of ab-
solute values, have those values really
given us always a safe anchor? A priori
absolutes abound all over the globe in
completely contradictory varieties Most
of the horrors of history have been
carried out under the banner of some
absolutistic philosophy, from the Aztec
mass sacrifices to the auto-da-fe of the
Spanish Inquisition, from the massacre
of the Huguenots to the Nazi gas cham-
bers. It is far from clear that any so-
ciety of the past did provide a mean-
ingful and dignified life for more than
a small fraction of its members. If,
therefore, some of the new philoso-
phies, inspired rightly or wrongly by
science, point out that absolutes have a
habit of changing in time and of con-
tradicting one another, if they invite
a re-examination of the bases of social
Authority and reject them when those
bases prove false (as did the Colonists
in this country), then one must not
blame a relativistic philosophy for
bringing out these faults. They were
there all the time.

In the search for a new and sounder
basis on which to build a stable world,
science will be indispensable. We can
hope to match the resources and struc-
ture of society to the needs and poten-
tialities of people only if we know
more about man. Already science has
much to say that is valuable and im-
portant about human relationships and
problems. From psychiatry 'o dietetics,
from immunology to meteorology, from
ci:/ planning to agricultural research,
oy far the largest part of our total sci-
entific and technical effort today is con-
cerned, indirectly or directly, with man
his needs, relationships, health, and
comforts. Insofar as absolutes are to
help guide mankind safely on the long
and dangerous journey ahead, they
surely should be at least strong enough
to stand scrutiny against the back-
ground of developing factual knowl-
edge,

Scientism

While the last four images implied
a revulsion from science. scientism may

be described as an addiction to science.
Among the signs of scientism are the
habit of dtviding all thought into two
categories. up-to-date scientific knowl-
edge and nonsense: the view that the
mathematical sciences and the large
nuclear laboratory offer the only per-
missible models for successfully employ-
ing the mind or organizing effort; and
the identification of science with tech-
r.mogy, to which reference was made
above.

One main source for this attitude is
evidently the persuasive success of re-
cent technical work. Another resides in
the fact that we arc passing through a
period of revolutionary changc in the
nature of scientific activitya change
triggered by the perfecting and dissem-
inating of the methods of basic research
by teams of specialists with widely dif-
ferent training and interests. Twenty
years ago the typical scientist worked
alone or with a few students and col-
leagues. Today he usually belongs to a
sizable group working under a contract
with a substantial annual budget In the
research institute of one university
more than 1500 scientists and techni-
cians are grouped around a set of mul-
timillion-dollar machines: the funds
come from government agencies whose
ultimate aim is national defense.

Eserywhere the overlapping interests
of basic research. industry, and the mil-
itary establishment have been merged
in a way that satisfies all three. Science
has thereby become a large-scale oper-
ation with a potential for immediate
and world-wide effects. The results are
a splendid increase in knowledge, and
also side effects that are analogous
to those of sudden and rapid urbaniza-
tiona strain on communication facil-
ities, the rise of an administrative bu-
reaucracy, the depersonalization of
some human relationships.

To a large degree, all this is unavoid-
able. The new scientific revolution will
justify itself by the flow of new knowl-
edge and of material benefits that
will no doubt follow. The danger
and this is the point where scientism
entersis that the fascination with the
mechanism of this successful enterprise
may change the scientist himself and
society around him. For example, the
unorthodox, often withdrawn individ-
ual. on whom most great scientific ad-
vances have depended in the past, does
not fit well into the new system. And
society will be increasingly faced with
the seductive urging of scientism to
adopt generally what is regardedof-
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ten erroneouslyas the pattern of or-
ganization of the new science. The
crash program, the breakthrough pur-
suit, the megaton effect are becoming
ruling ideas in complex fields such as
education, where they may not be ap-
plicable.

Magic

Few nonscientists would suspect a
hoax if it were suddenly announced
that a stable chemical element lighter
than hydrogen had been synthesized,
or that a manned observation platform
had been established at the surface of
the sun. To most people it appears that
science knows no inherent limitations.
Thus, the seventh image depicts science
as magic, and the scientist as wizard,
deus ex machine, or oracle. The atti-
tude toward the scientist on this plane
ranges from terror to sentimental sub-
servience, depending on what motives
one ascribes to him.
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Science's greatest men me} with opposition, isolation,
and even condemnation for their novel or "heretic"
ideas. But we should distinguish between the heretical
innovator and the naive crank.

19 Scientific Cranks

Martin Gardner

19 57

Cranks vary widely in both knowledge and intelligence. Some are
stupid, ignorant, almost illiterate men who confine their activities to
sending "crank letters" to prominent scientists. Some produce crudely
written pamphlets, usually published by the author himself, with long
titles, and pictures of the author on the cover. Still others are brilliant
and well-educated, often with an excellent understanding of the branch
of science in which they are speculating. Their books can be highly
deceptive imitations of the genuine articlewell-written and impres-
sively learned. In spite of these wide variations, however, most pseudo-
scientists have a number of characteristics in common.

First and most important of these traits is that cranks work in
almost total isolation from their colleagues. Not isolation in the geo-
graphical sense, but in the sense of having no fruitful contacts with
fellow researchers. In the Renaissance, this isolation was not neces-
sarily a sign of the crank. Science was poorly organized. There were
no journals or societies. Communication among workers in a field was
often very difficult. Moreover, there frequently were enormous social
pressures operating against such communication. In the classic case
of Galileo, the Inquisition forced him into isolation because the
Church felt his views were undermining religious faith. Even as late
as Darwin's time, the pressure of religious conservatism was so great
that Darwin and a handful of admirers stood almost alone against the
opinions of more respectable biologists.

Today, these social conditions no longer obtain. The battle of
science to free itself from religious control has been almost completely
won. Church groups still oppose certain doctrines in biology and
psychology, but even this opposition no longer dominates scientific
bodies or journals. Efficient networks of communication within each
science have been established. A vast cooperative process of testing
new theories is constantly going on--a process amazingly free (except,
of course, in totalitarian nations) from control by a higher "ortho-
doxy." In this modern framework, in which scientific progress has



become dependent on the constant give and take of data, it is impos-
sible for a working scientist to be isolated.

The modern crank insists that his isolation is not desired on his
part. It is due, he claims, to the prejudice of established scientific
groups against new ideas. Nothing could be further from the truth.
Scientific journals today are filled with bizarre theories. Often the
quickest road to fame is to overturn a firmly-held belief. Einstein's
work on relativity is the outstanding example. Although it met with
considerable opposition at first, it was on the whole an intelligent
opposition. With few exceptions, none of Einstein's reputable oppo-
nents dismissed him as a crackpot. They could not so dismiss him
because for years he contributed brilliant articles to the journals and
had won wide recognition as a theoretical physicist. In a surprisingly
short time, his relativity theories won almost universal acceptance,
and one of the greatest revolutions in the history of science quietly
took place.

It would he foolish, of course, to deny that history contains many
Sad examples of novel scientific views which did not receive an un-
biased hearing, and which later proved to be true. The pseudo-
scientist never tires reminding his readers of these cases. The opposi-
tion of traditional psychology to the study of hypnotic phenomena
(accentuated by the fact that Mesmer was both a crank and a charla-
tan) is an outstanding instance. In the field of medicine, the germ
theory of Pasteur, the use of anesthetics, and Dr. Semmelweiss' in-
sistence that doctors sterilize their hands before attending childbirth
are other well known examples of theories which met with strong
professional prejudice.

Probably the most notorious instance of scientific stubbornness
was the refusal of eighteenth century astronomers to believe that
stones actually fell from the sky. Reaction against medieval supersti-
tions and old wives' tales was still so strong that whenever a meteor
fell, astronomers insisted it had either been picked up somewhere and
carried by the wind, or that the persons who claimed to see it fall
were lying. Even the great French Academie des Sciences ridiculed
this folk belief, in spite of a number of early studies of meteoric
phenomena. Not until April 26, 1803, when several thousand small
meteors fell on the town of L'Aigle, France, did the astronomers de-
cide to take falling rocks seriously.

Many other examples of scientific traditionalism might be cited,
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as well as cases of important contributions made by persons of a
crank variety. The discovery of the law of conservation of energy by
Robert Mayer, a psychotic German physician, is a classic instance.
Occasionally a layman, completely outside of science, will make an
astonishingly prophetic guesslike Swift's prediction about the moons
of Mars (to be discussed later), or Samuel Johnson's belief (ex-
pressed in a letter, in 1781, more than eighty years before the dis-
cover,/ of germs) that microbes were the cause of dysentery.

One must be extremely cautious, however, before comparing the
work of some contemporary eccentric with any of these earlier ex-
amples, so frequently cited in crank writings. In medicine, we must
remember, it is only in the last fifty years or so that the art of healing
has become anything resembling a rigorous scientific discipline. One
can go back to periods in which medicine was in its infancy, hope-
lessly mixed with superstition, and find endless cases of scientists with
unpopular views that later proved correct. The same holds true of
other sciences. But the picture today is vastly different. The prevail-
ing spirit among scientists, outside of totalitarian countries, is one of
eagerness for fresh ideas. In the great search for a cancer cure now
going on, not the slightest stone, however curious its shape, is being
lefi unturned. If anything, scientific journals err on the side of per-
mitting questionable theses to be published, so they may be discussed
and checked in the hope of finding something of value. A few years
ago a student at the Institute for Advanced Studies in Princeton was
asked how his seminar had been that day. He was quoted in a news
magazine as exclaiming, "Wonderful! Everything we knew about
physics last week isn't true!"

Here and there, of courseespecially among older scientists who,
like everyone else, have a natural tendency to become set in their
opinionsone may occasionally meet with irrational prejudice against
a new point of view. You cannot blame a scientist for unconsciously
resisting a theory which may, in some cases, render his entire life's
work obsolete. Even the great Galileo refused to accept Kepler's
theory, long after the evidence was quite strong, that planets move
in ellipses. Fortunately there are always, in the words of Alfred Noyes,
"The young, swift-footed, waiting for the fire," who can form the
vanguard of scientific rev. dutions.

It must also be admitted that in certain areas of science, where
empirical data are still hazy, a point of view may acquire a kind
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of cult following and harden into rigid dogma. Modifications of Ein-
stein's theory, for example, sometimes meet a resistance similar to
that which met the original theory. And no doubt the reader will have
at least one acquaintance for whom a particular brand of psycho-
analysis has become virtually a religion, and who waxes highly indig-
nant if its postulates are questioned by adherents of a rival brand.

Actually, a certain degree of dogmaof pig-headed orthodoxy
is both necessary and desirable for the health of science. It forces
the scientist with a novel view to mass considerable evidence before
his theory can be seriously entertained. If this situation did not exist,
science would be reduced to shambles by having to examine every
new-fangled notion that came along. Clearly, working scientists have
more important tasks. If someone announces that the moon is made
of green cheese, the professional astronomer cannot be expected
to climb down from his telescope and write a detailed refutation.
"A fairly complete textbook of physics would be only part of the
answer to Velikovsky," writes Prof. Laurence J. Lafleur, in his excel-
lent article on "Cranks and Scientists" (Scientific Monthly, Nov.,
1951), "and it is therefore not surprising that the scientist does not
find the undertaking worth while."

The modern pseudo-scientistto return to the point from which
we have digressedstands entirely outside the closely integrated
channels through which new ideas are introduced and evaluated. He
works in isolation. He does not send his findings to the recognized
journals, or if he does, they are rejected for reasons which in the vast
majority of cases are excellent. In most cases the crank is not well
enough informed to write a paper with even a surface resemblance to
a significant study. As a consequence, he finds himself excluded from
the journals and societies, and almost universally ignored by the
competent workers in his field. In fact, the reputable scientist does
not even know of the crank's existence unless his work is given wide-
spread publicity through ncn-academic channels, or unless the scien-
tist makes a hobby of collecting crank literature. The eccentric is
forced, therefore, to tread a lonely way. He speaks before organizations
he himself has founded, contributes to journals he himself may edit,
anduntil recentlypublishes books only when he or his followers
can raise sufficient funds to have them printed privately.

A second characteristic of the pseudo-scientist, which greatly
strengthens his isolation, is a tendency toward paranoia. This is a



Scientific Cranks

mental condition (to quote a recent textbook) "marked by chronic,
systematized, gradually developing delusions, without hallucinations,
and with little tendency toward deterioration, remission, or recovery."
There is wide disagreement among psychiatrists about the causes of
paranoia. Even if this were not so, it obviously is not within the scope
of this book to discuss the possible origins of paranoid traits in indi-
vidual cases. It is easy to understand, however, that a strong sense of
personal greatness must be involved whenever a crank stands in
solitary, bitter opposition to every recognized authority in his field.

If the self-styled scientist is rationalizing strong religious convic-
tions, as often is the case, his paranoid drives may be reduced to a
minimum. The desire to bolster religious beliefs with science can be
a powerful motive. For example, in our examination of George
McCready Price, the greatest of modern opponents of evolution, we
shall see that his devout faith in Seventh Day Adventism is a sufficient
explanation for his curious geological views. But even in such cases,
an element of paranoia is nearly always present. Otherwise the pseudo-
scientist would lack the stamina to fight a vigorous, single-handed
battle against such overwhelming odds. If the crank is insincere
interested only in making money, playing a hoax, or boththen
obviously paranoia need not enter his make-up. However, very few
cases of this sort will be considered.

There are five ways in which the sincere pseudo-scientist's paranoid
tendencies are likely to be exhibited.

(1) He considers himself a genius.
(2) He regards his colleagues, without exception, as ignorant

blockheads. Everyone is out of step except himself. Frequently he
insults his opponents by accusing them of stupidity, dishonesty, or
other base motives. If they ignore him, he takes this to mean his
arguments are unanswerable. If they retaliate in kind, this strengthens
his delusion that he is battling scoundrels.

Consider the following quotation: "To me truth is precious.... I
should rather be right and stand alone than to run with the multitude
and be wrong.... The holding of the views herein set forth has
already won for me the scorn and contempt and ridicule of some of
my fellowmen. I am looked upon as being odd, strange, peculiar....
But truth is truth and though all the world reject it and turn against
me, I will cling to truth still."

These sentences are from the preface of a booklet, published in
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1931, by Charles Silvester de Ford, of Fairfield, Washington, in
which he proves the earth is flat. Sooner or later, almost every pseudo-
scientist expresses similar sentiments.

(3) He believes himself unjustly persecuted and discriminated
against. The recognized societies refuse to let him lecture. The jour-
nals reject his papers and either ignore his books or assign them to
"enemies" for review. It is all part of a dastardly plot. It never occurs
to the crank that this opposition may be due to error in his work.
It springs solely, he is convinced, from blind prejudice on the part
of the established hierarchythe high priests of science who fear to
have their orthodoxy overthrown.

Vicious slanders and unprovoked attacks, he usually insists, are
constantly being made against him. He likens himself to Bruno,
Galileo, Copernicus, Pasteur, and other great men who were unjustly
persecuted for their heresies. If he has had no formal training in the
field in which he works, he will attribute this persecution to a scientific
masonry, unwilling to admit into its inner sanctums anyone who has
not gone through the proper initiation rituals. He repeatedly calls
your attention to important scientific discoveries made by laymen.

(4) He has strong compulsions to focus his attacks on the great-
est scientists and the best-established theories. When Newton was the
outstanding name in physics, eccentric works in that science were
violently anti-Newton. Today, with Einstein the father-symbol of
authority, a crank theory of physics is likely to attack Einstein in the
name of Newton. This same defiance can be seen in a tendency to
assert the diametrical opposite of well-established beliefs. Mathema-
ticians prove the angle cannot be trisected. So the crank trisects it.
A perpetual motion machine cannot be built. He builds one. There
are many eccentric theories in which the "pull" of gravity is replaced
by a "push." Germs do not cause disease, some modern cranks insist.
Disease produces the germs. Glasses do not help the eyes, said Dr.
Bates. They make them worse. In our next chapter we shall learn
how Cyrus Teed literally turned the entire cosmos inside-out, com-
pressing it within the confines of a hollow earth, inhabited only on
the inside.

(5) He often has a tendency to write in a complex jargon, in
many cases making use of terms and phrases he himself has coined.
Schizophrenics sometimes talk in what psychiatrists call "neologisms"
words which have meaning to the patient, but sound like Jabber-
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wocky to everyone else. Many of the classics of crackpot science
exhibit a neologistic tendency.

When the crank's I.Q. is low, as in the case of the late Wilbur
Glenn Voliva who thought the earth shaped like a pancake, he rarely
achieves much of a following. But if he is a brilliant thinker, he is
capable of developing incredibly complex theories. He will be able
to defend them in books of vast erudition, with profound observations,
and often liberal portions of sound science. His rhetoric may be enor-
mously persuasive. All the parts of his world usually fit together
beautifully, like a jig-saw puzzle. It is impossible to get the best of
him in any type of argument. He has anticipated all your objections.
He counters them with unexpected answers of great ingenuity. Even
on the subject of the shape of the earth, a layman may find himself
powerless in a debate with a flat - earther. George Bernard Shaw, in
Everybody's Political What's What?, gives an hilarious description of
a meeting at which a flat-earth speaker completely silenced all op-
ponents who raised objections from the floor. "Opposition such as
no atheist could have provoked assailed him"; writes Shaw, "and he,
having heard their arguments hundreds of times, played skittles with
them, lashing the meeting into a spluttering fury as he answered
easily what it considered unanswerable."

In the chapters to follow, we shall take a close look at the leading
pseudo-scientists of recent years, with special attention to native
specimens. Some British books will be discussed, and a few Conti-
nental eccentric theories, but the bulk of crank literature in foreign
tongues will not be touched upon. Very little of it has been trans-
lated into English, and it is extremely difficult to get access to the
original works. In addition, it is usually so unrelated to the American
scene that it loses interest in comparison with the work of cranks
closer home.
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ALFRED M. BORK

Alfred M. Bork was born in 1926, received his Ph.D.
from Brown University, and is now Professor of Physics
at Reed College. He is a consultant to Harvard Project
Physics and one of the organizers of the Irvine Confer-
ence on the use of computers in the teaching of physics.
He was a scholar at the Dublin Institute for Advanced
Studies and has served on the faculty of the University
of Alaska. His areas of interest include the history of
late nineteenth and early twentieth century physics, the
teaching of science to nonscience mojors, and the pro-
duction of films with computers. Dr. Bork is the editor
of Science and Language and coeditor of Science and
Ideas.

JACOB BRONOWSKI

Jacob Bronowski, who received his Ph.D. from Cam-
bridge University in 1933, is now a Fellow of the
Salk Institute of Biological Studies in Colifornia. He
has served as Director of General Process Development
for the National Coal Board of England, as the Science
Deputy to the British Chiefs of Staff, and os head of
the Projects Division of UNESCO. In 1953 he was
Carnegie Visiting Professor at the Massachusetts Insti-
tute of Technology.

ALEXANDER CALANDRA

Alexander Calandra, Associate Professor of Physics at
Washington University, St. Louis, since 1950, was born
in New York in 1911. He received his B.S. from
Brooklyn College and his Ph.D. in statistics from New
York University. He has been a consultant to the
American Council for Education and for the St. Louis
Public Schools, has taught on television, and has been
the regional counselor of the American Institute of
Physics for Missouri.

ARTHUR C. CLARKE

Arthur C. Clarke, British scientist and writer, is a
Fellow of the Royal Astronomical Society. During
World War II he served os technical officer in charge
of the first aircraft ground-controlled approach project.
He has won the Kalinga Prize, given by UNESCO for
the popularization of science. The feasibility of many
of the current space developments was perceived and
outlined by Clarke in the 1930's. His science fiction
novels include Childhoods End and The City and the
Stars.

Artists and Writers

ROBERT MYRON COATES

Robert Myron Coates, author of many books and articles,
was born in New Haven, Connecticut in 1897 and
attended Yale University. He is a member of the
National Institute of Arts and Letters and has been an
art critic for The New Yorker magazine. His books in-
clude The Eater of Darkness, The Outlaw Years, The
Bitter Season, and The View From Here.

E. J. DIJKSTERHUIS

E. J. Dijksterhuis was born at Tilburg, Holland, in
1892, and later become a professor at the University of
Leyden. Although he majored in mathematics and
physics, his school examinations forced him to take
Latin and Greek, which awakened his interest in the
early classics of science. He published important
studies on the history of mechanics, on Euclid, on
Simon Steven and on Archimedes. Dijksterhuis died
in 1965.

ALBERT EINSTEIN

Albert Einstein, considered to be the most creative phys-
ical scientist since Newton, was nevertheless a humble
and sometimes rather shy man. He was born in Ulm,
Germany, in 1879. He seemed to learn so slowly that
his parents feared that he might be retarded. After
graduating from the Polytechnic Institute in Zurich, he
became a junior official at the Patent Office at Berne.
At the age of twenty-six, and quite unknown, he pub-
lished three revolutionary papers in theoretical physics
in 1905. The first paper extended Max Planck's ideas
of quantization of energy, and established the quantum
theory of radiation. For this work he received the
Nobel Prize for 1929. The second paper gave a mathe-
matical theory of Brownian motion, yielding a calcula-
tion of the size of a molecule. His third paper founded
the special theory of relativity. Einstein's later work
centered on the general theory of relativity. His work
has a profound influence not only on physics, but also
on philosophy. An eloquent and widely beloved man,
Einstein took an active port in liberal and anti-war
movements. Fleeing from Nazi Germany, he settled in
the United States in 1933 at the Institute for Advanced
Study in Princeton. He died in 1955.
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R. J. FORBES

R. J. Forbes, professor at the University of Amsterdam,
was born in Breda, Holland, in 1900. After studying
chemical engineering, he worked for the Royal Dutch
Shell Group in their laboratories and in refineries in
the East Indies. Interested in archaeology and museum
collections, he has published works on the history of
such fields as metallurgy, alchemy, petroleum, road-
building, technology, and distillation.

GEORGE GAMOW

George Gamow, a theoretical physicist from Russia,
received his Ph.D. in physics at the University of
Leningrad. At Leningrad he became professor after
being a Carlsberg fellow and a university fellow at the
University of Copenhagen and a Rockefeller fellow at
Cambridge University. He came to the United States
in 1933 to teach at the George Washington University
and later at the University of Colorado. His popularize-
tions of physics are much admired.

MARTIN GARDNER

Martin Gordner, well-known editor of the "Mathemati-
cal Gomes" department of the Scientific American, was
born in Tulsa, Oklahoma, in 1914. He received a
B.A. in philosophy from the University of Chicago in
1939, worked os a publicity writer for the University,
and then wrote for the Tulsa Tribune. During World
War II he served in the Navy. Martin Gardner has
written humorous short stories as well as serious articles
for such journals as Scripta Mathematics and Philosophy
of Science, and is the best-selling author of The Anno-
tated A ice, Relativity for the Million, Math, Magic,
and Mystery, as well as two volumes of the Scientific
American Book of Mathematical Puzzles and Diversions.

CARLEEN MALEY HUTCHINS

Carleen Hutchins was born in Springfield, Massachusetts,
in 1911. She received her A.B. from Cornell Univer-
sity and her M.A. from New York University. She has
been designing and constructing stringed instruments
for years. Her first step was in 1942 when "I bought an
inexpensive weak - toned viola because my musical
friends complained that the trumpet I had played was
too laud in chamber music, as well as out of tune with
the strings - and besides they needed a viola." In 1947,
while on a leave of absence from the Brearley School in
New York, she started making her first viola - it took
two years. She has made over fifty, selling some to
finance moe reseorch. In 1949 she retired from
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teaching and then collaborated with Frederick A.
Saunders at Harvard in the study of the acoustics of
the instruments of the violin family. She has had two
Guggenheim fellowships to pursue this study.

GERALD HOLTON

Gerald Holton received his early education in Vienna,
at Oxford, and at Wesleyan University, Connecticut.
He has been at Harvard University since receiving his
Ph.D. degree in physics there in 1948; he is Professor
of Physics, teaching courses in physicsas well as in
the history of science. He wcs the founding editor of
the quarterly Daedalus. Professor Holton's experimental
research is on the properties of matter under high pres-
sure. He is a co-director of Harvard Project Physics.

LEOPOLD INFELD

Leopold Infeld, a co-worker with Albert Einstein in
general relativity theory, wos born in 1898 in Poland.
After studying at the Crocow and Berlin Universities,
he become a Rockefeller Fellow at Cambridge where he
worked with Mox Born in electromognetic theory, and
then a member of the Institute for Advanced Study at
Princeton. For eleven yeors he wos Professor of Applied
Mathematics at the University of Toronto. He then re-
turned to Polond ond became Professor of Physics of the
University of Warsaw and until his death on 16 January
1968 he was director of the Theoretical Physics Institute
at the university. A member of the presidium of the
Polish Academy of Science, Infeld conducted reseorch
in theoretical physics, especially relativity and quantum
theories. Infeld was the author of The New field Theory,
The World in Modern Science, Quest, Albert Einstein,
ond with Einstein The EvolutionoTgysics.

ROBERT BRUCE LINDSAY

Robert Bruce Lindsay, born in New Bedford, Massa-
chusetts, in 1900, is the Hozard Prafessor of Physics
at Brown University. Between his studies at Brown and
Massachusetts Institute of Technology, he went to
Copenhagen as on American-Scandinavian Foundation
fellow. He was chairman of the physics department
and dean of the graduate school at Brown. Currently
he :, on the governing board of the American Institute
of Physics and editor-in-chief of the Journal of the
Ac ustical Society of America. In addition to acoustics
and quantum mechanics, Professor Lindsay is interested
in history and philosophy of science.
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JAMES CLERK MAXWELL

See J. R. Newman's articles in Readers 3 and 4.

JAMES ROY NEWMAN

James R. Newman, lawyer and mathematician, was
born in New York City in 1907. He received his A.B.
from the College of the City of New York and LL.B.
from Columbia. Admitted to the New York bar in 1929,
he practiced there for twelve years. During World
War II he served as chief intelligence officer, U. S.
Embassy, Landon, and in 1945 as special assistant to
the Senate Committee on Atomic Energy. From 1956-
57 he was senior editor of The New Republic, and
since 1948 had been a member of the board of editors
for Scientific American where he was responsible for
the boa review section. At the some time he was a
visiting lecturer at the Yale Law School. J. R.
Newman is the author of What is Science?, Science
and Sensibility, and editor of Common Sense of the
Exact Sciences, The World of Mathematics, and the
Harper Encyc opedia of Science. He died in 1966.

ERIC MALCOLM ROGERS

Eric Malcolm Rogers, Professor of Physics at Princeton
University, was born in Bickley, England, in 1902.
He received his education at Cambridge and later was
a demonstrator at the Cavendish Laboratory. Since
1963 he has been the organizer in physics for the
Nuffield Foundation Science Teaching Project. He is
the author of the textbook, Physics for the Inquiring
Mind.

PETER GUTHRIE TAIT

Peter Guthrie Tait, collaborator of William Thomson
(Lard Kelvin) in thermodynamics, was born at Dalkoith,
Scotland, in 1831. He was educated at the Academy
at Edinburgh (where James Clerk Maxwell was also a
student), and at Peterhouse, Cambridge. He remained
at Cambridge as a lecturer before becoming Professor of
Mathematics at Queen's College, Belfast. There ho
did research on the density of ozone and the action of
the electric discharge of oxygen and other gases.
From 1860 until his death in 1901 he served as Pro-
fessor of Natural Philosophy at Edinburgh. In 1864 he
published Ms first important paper on thermodynamics
and thermoelectricity and thermal conductivity. With
Lord Kelvin he published the textbook Elements of
Natural Philosophy in 1867.

BARON KELVIN, WILLIAM THOMSON

Baron Kelvin, William Thomson, British scientist and
inventor, was born in Belfast, Ireland, in 1824. At
the age of eleven he entered the University of Glasgow
where his father was professor of mathematics. In 1841
he went to Peterhouse, at Cambridge University. In
1848 Thomson proposed a temperature scale independent
of the properties of any particular substance, and in
1851 he presented to the Royal Society of Edinburgh a
paper reconciling the work on heat of Sadi Carrot with
the conclusions of Count von Rumford, Sir Humphrey
Davy, J. R. von Mayer and J. P. Joule. In it he
stated the Second Law of Thermodynamics. Lord Kel ein
worked on such practical applications as the theory of
submarine cable telegraphy and invented the mirror
galvanometer. In 1866 he was knighted, 1892 raised
to peerage, and in 1890 elected president of the Royal
Society. He died in 1907.

LEONARDO DA VINCI

Leonardo da Vinci, the exemplar of "Nano universals,"
the Renaissance ideal, was born in 1452 near Vinci in
Tuscany, Italy. Without a humanistic education, he
was apprenticed at an early age to the pointer-sculptor
Andrea del Verrocchio. The first 10 years of Leonardo's
career were devoted largely to painting, culminating
in the "Adoration of the Mogi." Defensive to criti-
cisms on his being "unlettered," Leonardo emphasized
his ability as inventor and engineer, becoming a forti-
fication expert for the militarist Cesare Borgia. By
1503 he was working as an artist in almost every field.
"Mona Lisa" and "The Last Supper" are among the
world's most famous paintings. Besides his engineering
feats such as portable bridges, machine guns, tanks,
and steam cannons, Leonardo contrived highly imagina-
tive blueprints such as the protoheliocopter and a fly-
ing machine. His prolific life terminated in the Castle
of Cloux near Amboise on May 2, 1519.

HARVEY ELLIOTT WHITE

Harvey Elliott White, Professor of Physics at the Uni-
versity of California, Berkeley, was born in Parkers-
burg, West Virginia in 1902. He attended Occidental
College and Cornell University where he received his
Ph.D. in 1929. In 1929-30 he was an Institute Re-
search Fellow at the Physics and Technology Institute
in Germany. His special interests are atomic spectra
and ultraviolet and infrared optics.
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